
READ ME FIRST
1-22-88

THANK YOU for purchasing the Lt. Kernal. Please read the follow
ing before proceeding.

1. Make sure that all functions of your computer system are working
properly before adding the Lt. Kernal Disk drive to your system
because any problems that your system might have, could be seen
as Lt. Kernal problems after it is installed.

2. READ the Lt. Kernal manual thoroughly before doing any installa
tion. Do not assume anything. See Section II, pages 2-1 through 2-20.

3. Do not attempt any of the installation work with the power on. Do
not connect anything to your computer with the power on.

4. When doing the internal hook-up on your computer, DOUBLE
CHECK the connections before closing the computer.

5. If all of the above has been done properly, you are ready to continue
with the steps in the manual to bring your Lt. Kernal to life. See Sec
tions m and on.

6. Most problems encountered on an initial system boot are due to hav
ing a C-128 computer system set for an 80 column display. This will
result in a Commodore sign-on message with no apparent activity from
the Lt. Kernal. This is due to the fact that the Lt. Kernal is shipped
to boot-up in the 64 mode (40 column display). Simply make sure
that both the monitor and computer are set to 40 column operation
OR change the boot-up default to C-128 mode with the CONFIG
command.

7. If you have carefully followed the instructions, your Lt. Kernal should
be running and ready for your use. If it is not functioning, re-check
the installation and refer to the Trouble Shooting section of the manual.

8. After you have the system running, become familiar with it before
making changes. Learn how to use the simple commands before at
tempting a system CONFIGuration, for example.

9. DO NOT DO a SYSGEN unless absolutely necessary. Read the
REPLACEMENT pages 2-25 and 2-26 tided THE SYSGEN UTILI
TY to determine when and how to do a SYSGEN.

10. When making changes, record the condition the system was in prior
to making the changes.

11. Most Users get into trouble assuming. Make sure you know what you
are doing, and then question the need to do it.

12. If you have any doubts, call us or check into the BBS for help. The
BBS is listed on page A-7 of your manual.

13. If possible, save the box and packing material your unit was shipped
in. This box was designed to safely ship the Lt. Kernal.

Lt. Kernal
20 or 40 Megabyte Systems

Operating
Manual

Lt. Kernal is a registered trademark of Fiscal Information, Inc.

LIMITED WARRANTY

Xetec, Inc. warrants this Xetec hard disk drive known as the Lt.
Kernal, to be in good working order for a period of one year from the
date of purchase from Xetec, Inc. or an authorized Xetec dealer.
Should this product fail to be in good working order at any time dur
ing this one year warranty period, Xetec will at its option, repair or
replace this product at no additional charge except as set forth below.
Repair parts and replacement products will be furnished on an ex
change basis and will be either reconditioned or new. All replaced
parts and products become the property of Xetec, Inc. This limited
warranty does not include service to repair damage to the product
resulting from accident, disaster, misuse, abuse, or non-Xetec
modification of the product.

Limited warranty service may be obtained by delivering the product
during the one year warranty period to an authorized Xetec dealer or
to Xetec, Inc., and by providing proof of purchase date. Warranty will
be valid for registered owners only. If this product is delivered by
mail, you agree to insure the product or assume the risk of loss or
damage in transit, to prepay shipping charges to Xetec, Inc., and to
use the original shipping container or equivalant. Contact Xetec,
Inc., 2804 Arnold Rd., Salina, Ks. 67401, (913)827-0685 for further
information.

All express and implied warranties for this product including the war
ranties of merchantability and fitness for a particular purpose, are
limited in duration to a period of one year from the date of purchase,
and no warranties, whether expressed or implied, will apply after this
period. Some states do not allow limitations on how long an implied
warranty lasts, so the above limitations may not apply to you.

If this product is not in good working order as warranted above, your
sole remedy shall be repair or replacement as provided above. In no
event will Xetec be liable to you for any damages including any lost
profits, lost savings or other incidental or consequential damages aris
ing out of the use of, or inability to use such product, even if Xetec or
an authorized Xetec dealer has been advised of the possibility of such
damages, or for any claim by any other party.

Some states do not allow the exclusion or limitation of incidental or
consequential damages for consumer products, so the above limitations
or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have
other rights which may vary from state to state.

TABLE OF CONTENTS

INTRODUCTION
The Lt. Kernal preface v

FCC Statement vi

SECTION I
The Lt. Kernal 1-1

DOS features 1-1
Technical specifications 1-2

SECTION II
Installation 2-1

Power voltage and frequency 2-1
Physical handling precautions 2-1
Equipment installation 2-1

C-64 installation 2-3
C-128 installation 2-7
128D installation 2-12

Burst Mode Modification 2-14
I/O Modification for CP/M 2-18
Power Application and Removal 2-20

SECTION III
Activating the System 3-1

What to expect 3-1

SECTION IV
Operating Concepts 4-1

How the Lt. Kernal works 4-1
Operating limitations 4-1

SECTION V
Commands Overview 5-1

Run-mode commands 5-1
Direct-mode commands 5-1
Review of DOS features 5-2

SECTION VI
Syntax Definitions and Conventions 6-1

I

SECTION VII
Run-mode Features and Commands ..

command page
autoaccess feature 7-1
autostart feature 7-2
bell feature 7-3
BUILDKEY file 7-4
COPY 8-13
DELETE key 7-5
INSERT key 7-6
LDLU 7-7
LG 7-8
LOAD 7-9
OPEN 7-10
SAVE 7-11
SCRATCH 7-12
SEARCH for key 7-13
SHUFFLE key file directory 7-14

SECTION VIII
Direct-Mode Features and Commands.

command page

Tt (restore defaults) 8-1
ACTIVATE 8-2
AUTOCOPY 8-3
AUTODEL 8-4
AUTOMOVE 8-5
BUILD 8-6
BUILDCPM 8-7
BUILDINDEX 8-8
CHANGE 8-9
CHECKSUM 8-10
CLEAR 8-11
CONFIG 8-12
COPY 8-13
D (change drive if) 8-14
DELete BASIC lines 8-15
DI (dump key file directory) 8-16

File type definitions 8-16
DIRectory 8-17
DUMP BASIC to text 8-19
ERAse file 8-20
FASTCOPY backup utility 8-21
FETCH text to BASIC 8-22
FIND 8-23

7-1

8-1

ii

Direct-Mode Features and Commands continued
G064 8-25
GO 128 8-26
GOCPM 8-27
ICQUB capture utility 8-28
Invoke feature 8-30
L (abbrieviated LOAD) 8-31
LOAD 8-31
LKOFF 8-32
LKREV 8-33
LU (change logical unit #) 8-34
MERGE 8-35
OOPS (recover erased file) 8-36
QUERY 8-37
RECOVER 8-38
RENUMber BASIC programs 8-39
S (special save) 8-45
SAVE program to disk 8-46
SHIP (prepare drive to ship) 8-47
TYPE disk BASIC to screen 8-48
UPDATEDOS 8-49
USER (change subdirectory) 8-50
VALIDATE 8-51

SECTION IX
Programming Considerations 9-1

General precautions 9-1
Backup copying 9-2
Directly invoked applications 9-4
Stack manipulations 9-5
Reserved memory areas 9-5
Speed tips 9-6
Disk partitioning 9-6
KEY FILES

KEY file usage 9-7
Definitions of KEY file terminology 9-7
KEY file structure 9-7
Simple KEY file examples 9-8
KEY file constraints 9-11
DIRECTORY lengths vs KEY lengths 9-12
KEY Run-mode values 9-13
KEY command mode values 9-14
KEY command parameters 9-14
KEY command general status returns 9-15
BUILDKEY file command 9-15
Machine Language key file access 9-16

iii

Programming considerations continued
INSERT key command 9-17
DELETE key command 9-18
SHUFFLE directory command 9-18
SEARCH commands 9-19

The CONFIG processor 9-21
The SYSGEN utility 9-25

SECTION X
Addenda/Errata and Update Documentation 10-1

SECTION XI
Trouble-Shooting and Warranty Service 11-1

Trouble-shooting guide 11-1
Functional tests 11-2
Equipment return policy 11-5

SECTION XII
DOS System Enhancements 12-1

Obtaining updates 12-1
'BUG' reporting 12-1
'BUG' reporting form 12-2

SECTION XIII ^
Installing C P / M T M 0 n the Lt. Kernal 13-1

Using CP/M 13-1
Building CP/M 13-1
Operating Speed 13-3

SECTION XIV
Lt. Kernal Networking 14-1

SECTION XV
DIAG command 15-1

APPENDIX I
KEY File Programming Example A-l

APPENDIX II
Bulletin Board A-7

APPENDIX III
20/40 Meg Add-on Drives A-8

Index X-l
iv

The Lt. Kernal

Welcome to the world of Serious Computing!
PLEASE READ THIS MANUAL CAREFULLY

BEFORE ATTEMPTING TO INSTALL YOUR LT. KERNAL!

If the first few pages of section II of this manual seem a little stern,
please understand — we want you to have the BEST possible service
from your Lt. Kernal. The only way to let you know about the poten
tial for damage you could do to your system is to tell it like it is!

You've invested in the most advanced disk system available for
Commodore™ computers, and an incorrect installation may damage
the Lt. Kernal, your computer, or both. Read the installation por
tion of this manual carefully before connecting together any parts of
the system.

The Lt. Kernal results from eighteen years of experience in designing
large multi-user, multi-tasking mini-computer systems. We have ap
plied the technology used in those larger systems to improve the
operating characteristics and speed of the C-64® and C-128® .

Thank you for purchasing the Lt. Kernal. You now have at your
fingertips really high speed computing power and a comfortable, user-
friendly disk operating system that significantly upgrades the functions
and usability of your Commodore computer. Quality software written
with the user in mind, and rugged, conservatively designed hardware
are combined to produce the best accessory ever for Commodore
computers.

Lt. Kernal is a registered trademark of Fiscal Information, Inc.
C-64 and C-128 are reg. TM of Commodore Business Machines, Inc.

v

FCC STATEMENT
This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer's instructions, may cause interference to radio and televi
sion reception. It has been type tested and found to comply with the
limits for a Class B computing device in accordance with the specifica
tions in Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference in a residential
installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause in
terference to radio or television reception, which can be determined by
turning the equipment off and on, the user is encouraged to try to cor
rect the interference by one or more of the following measures:

• Reorient the receiving antenna
• Relocate the computer with respect to the receiver
• Move the computer away from the receiver
• Plug the computer into a different outlet so that computer and

receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: "How to Identify and Resolve Radio-TV In
terference Problems." This booklet is available from the U.S. Govern
ment Printing Office, Washington, D.C., 20402, Stock No.
004-000-00345-4.

MANUFACTURER'S WARNING: Using a cable between the "Host
Adaptor" and the "Hard Drive Assembly", other than that provided
by Xetec Inc. may result in interference to radio and television
reception.

vi

I
The Lt. Kernal Disk Operating System V7.1

DOS FEATURES

Runs certain copy-protected software
Built-in KEYED INDEXED-RANDOM ACCESS METHOD
Supports both C-64 and 128 modes of operation and CP/M®
58 additional or enhanced system commands and features
Disk access speed more than 100 times faster than the 1541 floppy
Automatic power-up execution of any application program
Built in CP/M™ - like command-line features in C-64 and 128 modes
User configurable system characteristics such as screen and character
colors, and logical drive sizes
Up to eleven logical drives may be defined on the hard disk
Up to 7 hard drives in one system
DOS allows up to seven files to be OPEN for reading and writing
simultaneously in addition to the command/error channel
DOS differentiates between BASIC and machine language programs
Built-in backup and restore facilities
Direct invocation of programs from the READY prompt
Standard capacity of 20 Megabytes configurable up to 140 Meg.
Optional Multiplexer allows up to 16 computers to share 1 Lt.
Kernal system

1-1

TECHNICAL SPECIFICATIONS

Standard capacities, Formatted 20 Megabytes

Bytes per sector 512
Sectors per track 17
Tracks per cylinder 4
Number of cylinders 626

Media size 5 ' / 4 " (13.3 cm)

Recording density 10,200 Bits/inch
Track density 300 tracks/inch

Transfer rate to C-64 memory 38,000 Bytes/sec
Transfer rate to C-128 memory 65,000 Bytes/sec
Rotational speed 3,600 RPM
Average latency time 8.3 ms

Positioning time 18 ms min.
192 ms max.

Power consumption
20 Meg. SCSI Drive unit

117 Volts A.C. 60 Hertz 30 w typical
40 w max.

Host Adaptor
+ 5 Volts D.C. 250 ma typical

Size
20 Meg. SCSI Drive unit 12" x 14" x 2.5

Weight
20 Meg.SCSI Drive unit 10.80 lbs.

1-2

II.
INSTALLATION

CAUTION!
Unless your Lt. Kernal hard disk system is specifically labeled
otherwise, your system has been factory wired for:

115 volts A.C. 60 hertz only
Do not plug the power cord into any other voltage or frequency
outlet.

For domestic American systems, the correct outlet type is the
three prong grounded variety. Use of a three prong adapter in a
two prong ungrounded outlet is strongly discouraged since such
use presents a high shock hazard and may damage your system.

CAUTION!
Always handle your hard disk/power supply assembly with the utmost
care. Mechanical bumps and shocks to the drive could irrepairably
damage it.

Never move or ship the drive without first conditioning it for shipping
via the "ship" system command, described later in this manual.

Never move the drive unless power has been off for at least 30
seconds.

Never ship the drive in any container except its original carton.

INSTALLING THE LT. KERNAL
Installation of the Lt. Kernal hardware takes only a few moments, but
MUST be done carefully to avoid damage. For a typical system setup
refer to FIG 1. Be gentle, and work slowly and deliberately, referring
to the text frequently as you go.

2-1

Typical System

FIG. 1

FIRST
Make sure power is completely turned off to all components of your
computer and the Lt. Kernal!!

SECOND
NEVER, NEVER, plug or unplug any interconnection of the system
with power applied!!
THIRD
Always remember the second rule or you will eventually destroy some
component of your system.

2-2

BEFORE BEGINNING YOUR INSTALLATION OF THE
LT. KERNAL, CAREFULLY CHECK YOUR COMPUTER FOR

PROPER OPERATION WITHOUT THE LT. KERNAL
INSTALLED. THIS WILL PREVENT FALSE

INDICATIONS OF TROUBLE LATER.

There are two possible installations of the Lt. Kernal. One is for the
C-64 computer, and the other for the C-128. To utilize the 128 mode
in the C-128, the C-128 adaptor board must be installed. Both installa
tions will void your computer's warranty, as you will be required to
open the computer case install clips and/or an adaptor board. If you
do not feel competent to do this installation properly, seek the
assistance of a qualified computer technician. CAUTION: Read each
step thoroughly first before proceeding.

TOOLS REQUIRED: A #1 phillips screwdriver and possibly a T-10
TORX driver plus needle nose pliers for the 64C inner shield and a
small flat blade screwdriver.

C-64 or C-64C INSTALLATION
Step 1 - Remove screws on the bottom of the computer case, un-snap
the upper keyboard section and carefully unplug the keyboard and in
dicator LED cables. Place this section aside for now.
Step 2 - Locate the HIRAM and CAEC cable assemblies. Refer to
FIGS 2 and 3 to find your model and attach the HIRAM clip to the
lead indicated of resistor R44 and attach the CAEC clip to PIN 6 of
chip U27. Be sure that the clip is not shorting to any of the adjacent
pins of either chip. Secure both leads with small pieces of scotch tape
and dress each end out the opening for the expansion slot on rear of
computer. NOTE: On some models, the metal shield must first be
lifted by removing the TORX screws as needed, and then un-twist the
small metal tabs around the perimeter of the shield. Replace this shield
after the above clips are installed.
Step 3 - Install the keyboard section by first connecting the keyboard
and LED cables and their lower section into place, snap case shut and
install bottom screws into case.
Step 4 - Locate the HOST ADAPTOR and push the HIRAM connec
tor onto the leftmost pair of pins of plug PI as shown in FIGS 2 and
3. Push the CAEC connector onto the 4th set of pins from the left on
plug PI again as shown in FIGS 2 and 3. The jumpers on the 3rd and
5th sets of pins must also be in position as shown. The Host adaptor
may now be inserted into the EXPANSION connector on the rear of
the computer.

2-3

C-64 cable connections version 2

You may have a newer version of the C64 computer board that is smaller
at about 5" wide. Use the information below to make your HIRAM and
CAEC connections.

HIRAM cable to pin 28 of U6 (MPU) or to pin 6 of U8 (PLA)

CAEC cable to pin 5 of U6 (MPU) or to pin6 of U3.

2-5

Step 5 - Locate the 25 pin SIGNAL cable, plug one end into the con
nector on the rear of the Host Adaptor and secure the cable with the
attached screws. Refer to FIG 4.

Step 6 - Attach remaining end of the 25 PIN SIGNAL cable to the
HOST ADAPTOR INPUT connector of the HARD DISK enclosure.
Again, secure the cable with the attached screws. Refer to FIG 5.
Step 7 - Locate the AC POWER CABLE and plug female end into the
AC POWER receptable of the HARD DISK enclosure. Make sure the
Power Switch is in the OFF position and plug the male end into a pro
perly grounded 115 volt AC, 60 Hz outlet. Refer to FIG 5.
Step 8 - Re-connect any other components to your system such as
printers, floppy disk and other accessories.
Step 9 - Refer to Power Application Sequence page 2-20.

2-6

Rear view of Lt. Kernal hard disk enclosure

C-128 INSTALLATION
Step 1 - Remove screws on the bottom of the computer case, un-snap
the upper keyboard section and carefully unplug the keyboard and in
dicator LED cables. Place this section aside for now.
Step 2 - Lift the metal shield by removing the TORX screws and un
twisting the metal tabs around the perimeter of the circuit board
shield. Lay this shield aside for now.
Step 3 - Locate the C-128 ADAPTOR and lay on top of the SHIELD
as shown in FIG 7. CAUTION: Discharge yourself from potential
static electricity by touching the metal SHIELD before proceeding to
the next step.
Step 4 - Locate chip U7 in FIG 6. Gently remove this chip from its
socket by inserting a small flat blade screwdriver as shown and then
carefully rotate or twist the blade left and right. DO NOT USE A
PRYING ACTION! Once removed, check all pins for straightness, and
proceed to next step.
Step 5 - Carefully insert chip U7 into the socket provided on the
C-128 ADAPTOR. CAUTION: Be sure PIN 1 of chip matches PIN 1
of socket or indented end of chip matches indented end of socket.
Refer to FIG 7.

2-7

Removal of chip U7 in C-128

O n

INSIDE V I E W EiF C - 1 2 8

FIG. 6

2-8

C-128 adaptor board installation

TO

INSIDE V I E W OF C - 1 2 8

FIG. 7

2-9

C-128 cable connections with Rev C adaptor board

INSIDE VIEW DF C - 1 2 8

\
\

\
PIN 1 \

4
\

10

FIG 7A

The Rev B and Rev C adaptor boards are functionally identical. They vary
only in size. Your Lt. Kernal 128 system may contain either Rev board.

2-9A

Step 6 - Install the C-128 ADAPTOR into the socket vacated in Step 4
as shown in FIG 8. CAUTION: Make sure pins on the bottom of
adaptor board are in their proper positions before firmly seating into
place. Press down firmly in the area shown to firmly seat the ADAP
TOR board in place.

C-128 cable connections

FIG. 8

2-10

C-128 adaptor board (Rev C) installation

2-10A

Step 7 - Refer to FIG 8 and locate HIRAM CABLE. Clip this cable
to PIN 23 of U11 as shown and secure with a piece of scotch tape. Be
sure that the clip is not shorting to any of the adjacent pins of Chip
Ul l . Plug the remaining end onto plug P2 of the C-128 ADAPTOR
board as shown. (NOTE: The CAEC CABLE is not used in the C-128
installation)
Step 8 - Again refer to FIG 8 and locate the C-128 cable and take
either one of the ends and position it so the flat ribbon is coming out
of the top side of the connector. Now push this connector onto plug
PI of the C-128 ADAPTOR board as shown making sure all ten pins
are properly entering each hole on the socket.
Step 9 - Locate the HOST ADAPTOR and remove the two jumpers
on plug PI as they will not be used in your C-128 installation. Push
the remaining end of the C-128 CABLE onto plug PI again with the
flat ribbon coming out on the top side of the connector. The HOST
ADAPTOR may now be inserted into the EXPANSION connector on
the rear of your C-128. Dress or position the flat cable so it will allow
you enough slack to remove your HOST ADAPTOR if necessary.
Refer to FIG 9.

Host Adaptor cable connections for C-128

H O S T A D A P T O R

•

rREMDVE

H O S T A D A P T O R

•

FIG. 9

2-11

Step 10 - Replace the metal shield on the C-128 main board being
careful not to pinch or bind the C-128 CABLE.
Step 11 - Install the keyboard sections by re-connecting the cables,
snap case halves together, and install bottom screws in case.
Step 12 - Locate the 25 pin SIGNAL cable, plug one end into the
connector on the rear of the Host Adaptor and secure the cable with
the attached screws. Refer to FIG 4.
Step 13 - Attach remaining end of the 25 PIN SIGNAL cable to the
HOST ADAPTOR INPUT connector of the HARD DISK enclosure.
Again, secure the cable with the attached screws. Refer to FIG 5.
Step 14 - Locate the AC POWER CABLE and plug female end into
the AC POWER receptable of the HARD DISK enclosure. Make sure
the Power Switch is in the OFF position and plug the male end into a
properly grounded 115 volt AC, 60 Hz outlet. Refer to FIG 5.
Step 15 - Re-connect any other components to your system such as
printers, floppy disk and other accessories.
Step 16 - Refer to Power Application Sequence page 2-20.

128D INSTALLATION

Step 1 - Unplug power, keyboard, and all other connections from the 128D
computer.

Step 2 - Remove the 2 screws on the bottom and the 3 screws on the back
of the computer case. Slide top back and lift up to remove. Place this aside
for now.

Step 3 - Locate the 128D Adaptor Board and place it on a firm, flat sur
face. CAUTION: Discharge yourself from potential static electricity by
touching the metal case of the computer before proceeding to the next step.

Step 4 - Locate U7 on the mother computer board. Refer to FIG 10. Gent
ly remove this chip from its socket by inserting a small flat blade screwdriver
as shown and then carefully rotate or twist the blade left and right. DO
NOT USE A PRYING ACTION! Once removed, check all pins for
straightness, and proceed to the next step.

Step 5 - Carefully insert chip U7 into the socket provided on the 128D
Adaptor Board. CAUTION: Be sure pin 1 of chip matches pin 1 of socket
or indented end of chip matches indented end of socket. Refer to FIG 11.

Step 6 - Install the 128D Adaptor Board into the socket vacated in Step
4 as shown in FIG 12. CAUTION: Make sure pins on bottom of adaptor
board are in their proper positions before firmly seating into place.

2-12

128D cable connections

INSIDE VIEW OV 128D

FIG 12
Step 7 - Refer to FIG 12 again and locate HIRAM Cable. Clip this cable
to Pin 23 of U11 as shown. Be sure that the clip is not shorting to any adja
cent pins of chip U l l . Plug the remaining end onto plug P2 of the 128D
Adaptor Board as shown. (Note: The CAEC Cable is not used in the 128D
installation)

Step 8 - Again refer to FIG 12 and locate the 128 cable. Take either one
of the ends and position it so the flat ribbon is coming out of the top side
of the connector. Now push this connector onto the plug PI of the 128D
Adaptor Board as shown making sure all ten pins are properly entering each
hole on the connector.

Step 9 - Repeat the applicable steps 9 through 16 of the C-128 Installation
starting at page 2-11.

Burst Mode Modification

The Lt. Kernal does not support the "FAST" modes of the 1571
drive. If using a 1571 with a 128 computer, you must use the serial
cable included with the Lt. Kernal, or else directory listings, pro
grams, etc. will not load without being scrambled. With this cable,
your 1571 will operate at the speed of a 1541.

2-14

The following steps instruct how to modify your 128 computer to take
advantage of the burst mode. The Burst Mode Modification MUST
BE DONE if you are using a C-128D computer to work correctly
with the Lt. Kernal. If you do not have a need for the burst mode, we
suggest that you do not perform this modification. It will VIOLATE
your Commodore warranty. If you do not have any technical skills and
yet would like to make this modification, we suggest you have a
qualified technician perform it.
Step 1 - Remove screws on the bottom of the computer case, unsnap the
upper keyboard section and carefully unplug the keyboard and indicator
LED cables. Place this section aside for now.
Step 2 - Lift the metal shield by removing the TORX screws and untwisting
the metal tabs around the perimeter of the circuit board shield. Lay this
shield aside for now.
Sfep 3 - Locate chip U8 on the circuit board. Refer to FIG 13 for the C-128
computer and FIG 14 for the 128D computer. For the C-128, cut pin 9
of U8 and for the 128D, cut pin 13 of U8 as close as possible to the circuit
board and CAREFULLY bend the pin upward so that it is parallel to the
circuit board. Refer to FIG 15.

Illlllllll mi I

- C - 1 2 8 C A B L E

HIRAM ID P I N 2
• F U l l

4JJJJ
TTTTT

" n
?

n |

u
D

117 a

INSIDE V I E W ElF C - 1 2 8

- P R E S S DO
IN THIS A

FIG 13

2-15

FIG 14

Step 4 - Solder one end of an insulated wire to the pin of U8 modified in
step 3. Refer to FIG 16. Be careful NOT to solder bridge adjacent pins
of U8.
Step 5 - Locate and unplug the Adaptor Board from the computer circuit
board. Carefully remove U7 from the adaptor board. Solder the other end
of the wire to the bottom of the Adaptor Board at pin 47 of the U7 socket
being careful NOT to solder bridge pin 47 to pin 46 or 48. Refer to FIG 17.
Step 6 - Re-install U7 into the socket. CAUTION: Be sure pin 1 of chip
matches pin 1 of socket. Re-Install the Adaptor Board into the computer
circuit board making sure pins on the bottom of the adaptor board are in
their proper positions before firmly seating into place. Refer to C-128 and
128D INSTALLATION—pages 2-7 through 2-14.
Step 7 - Re-assemble the computer as previously outlined refering to pages
2-7 through 2-14.

2-16

2-17

I/O Modification for CP/M

CP/M operation requires the Host Adaptor to be set for I/O-l. The
current version of the Lt. Kernal should already be set for I/O-l.
Refer to FIG 18. The current version Host Adaptor (Rev. C) is the
only one that has the I/O selectable pins. If you have an older version
system, you will have to do a slight modification to the Host Adaptor.
Refer to FIGs 19 and 20.

To select I/O-l, remove the jumper from 1/0-2 pins and slide on I/O-l
pins.

The Rev. B Host Adaptor is manufactured to operate in I/0-2 mode.
To convert to I/O-l follow the steps below. If you do not have
technical skills, we suggest you have a qualified person perform this
modification.

Step 1 - Cut trace on component side of Host Adaptor as shown that
connects gold pad 10 with feed through hole.
Step 2 - Solder an insulated wire (approx. 22 ga.) as shown from feed
through hole to gold pad 7. Be careful not to solder 'bridge' the wire
to any other surrounding pads.

! / •

Illlllllllllllllllllll
FIG 18

Host Adaptor Rev. C

2-18

C U T T R A C E H E R E

^ - P I N 10

FIG 19
Host Adaptor Rev. B

S O L D E R W I R E H E R E

iiiiiiiiiiiiiiii
FIG 20

Host Adaptor Rev. B

2-19

POWER APPLICATION SEQUENCE
Power should be applied to your Lt. Kernal/Commodore combination
in a specific manner.

Before you do power up your system, please remember that things are
going to act a little differently than what you accustomed to seeing, so
read this whole section before actually applying power. We want you
to know what to expect BEFORE it happens.

Follow the steps in this order:
1. Monitor or television set.
2. Printers, floppy disks, and any other accessories EXCEPT the

Lt. Kernel hard-disk.
3. The Lt. Kernal hard disk system.
4. Finally, the Commodore computer itself.

POWER REMOVAL SEQUENCE

1. The Lt. Kernal hard disk system
2. Printers, floppy disks, and any other still powered accessories,

including your monitor or TV set.
3. The computer.

Read Section IX before continuing.

A demo program called PXE is located on LUO, USEROO, and may be
run in the C-64 mode by simply typing PXE and then press the
"RETURN" key. Ignore the message "HIT ANY KEY WITHIN 5
SECONDS" or it will take you to an un-documented editor of the
demo program. ENJOY!

2-20

III.
ACTIVATING THE SYSTEM

The Lt. Kernal is configured to come up in the 64 mode. (This can be
changed). Therefore, your computer system must be ready to use the
64 mode which is a 40 column screen.

With the 128 computer, DO NOT HOLD the C= key down during
power up. The Lt. Kernal will automatically take control and place
the 128 in a 64 mode. If you do not see any results at this point, you
are probably in an 80 column condition.

NOW IT ALL COMES TOGETHER! When you apply power to
your system without the Lt. Kernal present, you ordinarily would ex
pect to see the Commodore BASIC power-up messages and then the
BASIC ready prompt within just a couple of seconds of turn-on.

That's not going to happen with the Lt. Kernal ... at least not instant
ly. What will happen instead is this:

As soon as the drive has run up to speed, you should see the indicator
light on the front of the drive blink twice, just briefly. About three
seconds after that, the light will come on solidly for one second while
the Lt. Kernal copyright messages appear. If the volumn control on
your monitor is turned up, you will hear a beep and see a new ready
prompt with the following information:

C64 D#08 LU10 USER00 PORT#00 READY

These prompts will be explained in latter parts of the manual. On a
C-128, you may see even more activity. If the Lt. Kernal is con
figured to power-up as a C-64, you will see the screen blank again.
The whole process repeats, finally to arrive at the C-64 mode of
operation.

A lot went on to get to this point, and that's why there's a delay after
you turn on the system. While you were waiting for the system sign-
on message, and while the disk drive was running up to speed, a long
series of system diagnostics took place — checking the Lt. Kernal
Host Adaptor — testing the drive's controller electronics — and final
ly, even testing the Disk Operating System software installed on your
drive.

3-1

If any one of the diagnostics along the way should fail, you'll just see
the regular Commodore sign-on without the Lt. Kernal message, and
without the beep. If the tests do fail, please TURN THE SYSTEM
OFF and turn directly to "TROUBLE-SHOOTING" in this manual.

NOW CHECK YOUR CABLING AND WIRING - AND
TURN ON YOUR SYSTEM.

Then we'll introduce you to your new DOS.

Running the INSTALLCHECK program

The Lt. Kernal DOS features a test program called INSTALLCHECK
that tests the circuitry of the Host Adaptor and detects any errors of
the HIRAM and CAEC connections you made to your computer.
To use the INSTALLCHECK program, you must first be in the 64
mode and then simply type INSTALLCHECK. The program will begin
its testing and prompt you through the process. If any of the tests
should fail, recheck your connections.

3-2

IV.
OPERATING CONCEPTS

HOW IT WORKS

The Lt. Kernal DOS was written with the business user in mind.
Many comfortable and easy-to-use new features have been added to
your Commodore disk operating system while still supporting most of
the existing 1541 floppy commands. The only commands not supported
have no appropriate use in this environment. Most existing applications
written in BASIC will run unmodified under the Lt. Kernal DOS.
Many machine language applications and utilities such as assemblers,
editors, and 'wedges' will also operate normally under the Lt. Kernal's
control — but some programs will not run in cooperation with the Lt.
Kernal. The reason lies in how the Lt. Kernal got its name, and in
how it operates.

In order to support the tremendous speed at which the Lt. Kernal
operates, it was essential that the cartridge/expansion port be used to
communicate with the hard disk. To do that, there has to be a body of
programs run by the Commodore computer to control the cartridge
port and the Lt. Kernal Host Adaptor itself. But we wanted the Lt.
Kernal to operate without making you sacrifice any of the memory you
were accustomed to using. That has been accomplished by making the
DOS support programs run in RAM (a modified Kernal) on the Lt.
Kernal Host Adaptor. Since the Commodore computer itself is running
the DOS, a few "programming considerations" (discussed in a later
section) must be observed in order not to disrupt the always-running
DOS.

4-1

This page intentionally left blank

4-2

V.
COMMANDS OVERVIEW and

DOS FEATURES (review)

RUN MODE Features or Enhanced Commands

autoaccess LDLU
autostart LG
bell LOAD
BUILDKEY fde OPEN
COPY SAVE
DELETE key SCRATCH
INSERT key SEARCH key

SHUFFLE

DIRECT MODE Features or Enhanced Commands

T T
ACTIVATE
AUTOCOPY
AUTODEL
AUTOMOVE
BUILD
BUILDCPM
BUILDINDEX
CHANGE
CHECKSUM
CLEAR
CONFIG
COPY
D
DEL
DI
DIR
DUMP
ERA
EXEC
FASTCOPY
FETCH

FIND
G064
G0128
GOCPM
ICQUB
invoke
L
LOAD
LKOFF
LKREV
LU
MERGE
OOPS
QUERY
RECOVER
RENUM
S
SHIP
TYPE
UPDATEDOS
USER
VALIDATE

5-1

This page intentionally left blank

5-2

VI.
COMMAND SYNTAX DEFINITIONS

Throughout the descriptions of the commands which follow, we will
use certain conventions to describe the command syntaxes and
responses. Here are the definitions of those conventions.

• COMMANDS are always noted in UPPER-CASE. You enter
commands from the keyboard, or include them in programs.

• FEATURES are noted in LOWER-CASE. A feature is an enhanced
or added mode of operation, not a command.

• Within a command's syntax description, capital letters indicate the
COMMAND name as you must enter it.

• Within a command's syntax description, lower-case letters indicate
FILE-names or parameters for the command.

• A " " symbol indicates_a__REQUIRED space in the
command syntax.

• Text within brackets indicates [optional parameters or file names].

• A "—" symbol indicates—a—REQUIRED—hyphen—in—the—
command—syntax.

• A term " < range > " indicates a save range for the SAVE command
where the range may be expressed either in decimal or hexidecimal
as

hexadecimal range <$hex start-hex end> inclusive
decimal range <dec. start-dec. end> inclusive

• An exclamation mark (!) appended to the end of a DIRectory listing
line indicates that the file has been changed or modified since the
last CLEAR or FASTCOPY was executed.

• lfn is the Commodore 'logical file number' convention

• dev refers to the hardware device number of the drive selected

• sa is the Commodore 'secondary address or channel number'

• lu refers to the logical drive number (not to be confused with
_ hardware device number) which may accompany a LOAD, SAVE,

or OPEN command.

6-1

• When used in the context of LUs or Logical Drives, a DIRECTORY
is a list of the fdes stored on that LU.

• user refers to a logical sub-directory number within a logical drive's
(LU's) directory.

• When used in the context of KEY fdes, a DIRECTORY is one of up jm*.
to five LISTS of KEYS stored in a KEY file.

• A KEY is a fixed length string stored in a KEY file which is
associated with a RECORD NUMBER for use in indexing records
within RELative files.

6-2

VII.
RUN-Mode Features and Commands

autoaccess
feature

Autoaccess allows transfer of a load request to the floppy disk when a
file-not-found condition arises on the hard disk.
If the hard disk is defined as device #8 (this is user definable), and the
floppy is also defined as device #8, then all Commodore syntax
LOAD's will first be referred to the hard disk. If the file is not found,
than an attempt to LOAD that same file from the floppy will be made.

This feature may be disabled via CONFIG if it interferes with your
application software.

7-1

autostart
feature
Mode: Power-up or hardware reset

Autostart is almost self-explanatory. Simply stated, any program saved
under the name "AUTOSTART" will be automatically loaded and run
upon power-up or after a hardware reset. Autostart functions for both
BASIC and machine language programs, and is one of the best
features any turn-key business system can have available.

Autostart may be overridden by holding down the space bar during a
power-up or reset start.

7-2

bell
feature

Mode: Direct or Run

Bell offers programmers a method of issuing an audible prompt
without having to maintain SID drivers in their programs. Any PRINT
from BASIC or CHROUT from machine language of the ASCII Bell
character [CHR$(7) or hex, 07] will cause a beep on the monitor or
television set if the BEEPER option is selected by the user in the
CONFIG mode described later.

7-3

BUILDKEY file
command
From BASIC
Syntax: SYS 64628:0,lfn,directory,Stringvar,reel,rech,status
Ifn is not used, but a dummy variable must be provided
directory is the NUMBER OF DIRECTORIES you wish to have built
in the new KEY file
Stingvar contains the KEY FILE NAME and the KEY LENGTHS for
each directory you wish to create
reel and rech are the low and high order bytes of the number of keys
in the largest directory.
status is the value returned from the SYS indicating the success or
failure of the BUILDKEY operation

Please see the KEY file usage examples in Section IX of this manual
for detailed examples of BUILDKEY.

For further descriptions of KEY file operations, refer to Section IX,
page 9-16 for information on machine language calls.

7-4

DELETE key
command

From BASIC
Syntax: SYS 64628:2,lfn,directory,Stringvar,reel,rech,status

Ifn is the logical file number of a KEY file already OPENed on the
hard drive.
directory is the number (1-5) of the selected key DIRECTORY within
the KEY file.
Stringvar contains the EXACT key you wish to delete,
reel and rech are the Low and High bytes of the EXACT double-
precision record number associated with the key to be deleted,
status is the value returned from the SYS to indicate the success or
failure of the DELETE to occur.
Please see the KEY files usage examples in Section IX of this manual
for detailed examples of DELETE key.

For further descriptions of KEY file operations, refer to Section IX,
page 9-16 for information on machine language calls.

7-5

INSERT key
command
From BASIC

Syntax: SYS 64628:l,lfn,directory,Stringvar,reel,rech,status

lfn is the logical file number of a KEY file already OPENed on the
hard drive.
directory is the number (1-5) of the selected key DIRECTORY within
the KEY file.
Stringvar contains the EXACT key you wish to insert,
reel and rech are the Low and High bytes of the EXACT double-
precision record number to be associated with the key being inserted,
status is a value returned from the SYS to indicate the success or
failure of the INSERT to occur.

For further descriptions of KEY file operations, refer to Section IX,
page 9-16 for information on machine language calls.

LDLU
command

Syntax: OPEN #lfn,dev,sa,''Ldev#LU#USR#"
Mode: Direct or RUN via channel 15
dev# is a single hexidecimal digit expressing the NEW Lt. Kernal
device number.
LU# is a single HEXIDECIMAL digit expressing the NEW Lt. Kernal
operating LU.
USR# is a single HEXIDECIMAL digit expressing the NEW Lt. Ker
nal operating USER partition.
LDLU permits you to change the operating characteristics of the Lt.
Kernal on the fly. Any values provided which are illegal will be ig
nored. There is NO error status returned from the LDLU command
except SYNTAX ERROR. A syntax error will be returned if ANY of
the values are illegal, or not provided. BUT THE VALUES WHICH
WERE LEGAL, will be acted upon, even if a syntax error exists.
Example:

To change the operation of the Lt. Kernal from
Device #8
LU 0
USER 2

to
Device #9
LU 10
USER 15 issue

OPEN 15,8,15,"L9AF":CLOSE15
Always remember that if you change the operating DEVICE number
of the Lt. Kernal , all files OPENed under the OLD device will still
remain OPEN, but now under the NEW number.

The LDLU command will permit you to open files across LU and
USER boundaries then to switch back to your 'normal' operating LU,
keeping those files open.

There is no DEFAULT setting for LDLU.

7-7

LG
command
Syntax: Open 15,8,15, "LG" or

Open 15,8,15, "LG#"

LG# is a single HEXIDECIMAL digit representing the LU# for which '
LG is to be performed.

LG 'gets' the current STATUS of the currently-logged or expressly-
requested LU.

The status of the LU is refunded via the command/error channel in an
error message format. The status is read via the following syntax:

Input#15,E,E$,D,L,U,BF,BU
where E = 6 (command successful) or

other than 6 (command not successful)
E$ = "STATUS"
D = current device#
L = current or requested LU#
U = current user #
BF = current BLOCKS FREE (hard drive blocks)
BU = current BLOCKS USED (hard drive blocks)

LG will return this status in one second or less, regardless of the size
or fulness of the LU. Approximate CBM blocks are computed as INT
(Hardblocks/254*512)

7-8

LOAD
command

Syntax: LOAD "[|u:]|user:]filename",dev[,sa]

dev is the drive selected
i ^ ^ > sa is the secondary address where

0 or none = BASIC load
and 1 = machine-language load

Mode: Direct or Run
on the hard drive, LOAD may be abbreviated to

L_["][lu:][user:]filename["]
with optional quotation marks about the name and without specifying
either device number or secondary address.

when used in this abbreviated syntax, LOAD will load the file at its
correct load address depending on the filetype.
Example: L l.MYFILE - LOADs the program MYFILE from the hard
disk logical unit #1.

7-9

OPEN
command
Syntax: OPEN lfn,dev,sa,"[lu:]filename"

Ifn is the logical file number
dev is the physical address (number) of the disk accessed
sa is the DOS channel associated with this logical file (channel 15 is
reserved for the command/error channel).
Mode: Direct or Run

OPEN retains exactly the same syntax as when used with the 1541
floppy disk, but now allows up to SEVEN logical FILES regardless of
type, to be OPEN for reading and writing simultaneously on the hard
disk. The Commodore ROM operating system will allow you to have
as many as three more files open on a floppy disk, as well, for a total
of ten open files.

Some 1541 file types occupy more than one channel when OPENed.
All Lt. Kernal files use only one channel. This enhancement does
NOT increase the open channel capability of the 1541 floppy disk.

Note that the "user" number is NOT an option in OPEN.

7-10

SAVE
command

Syntax: SAVE "[<range>][lu:]filename",dev

where dev is the disk selected onto which to save the file
Mode: Direct or Run

SAVE may be abbreviated on the hard disk (only in the Direct Mode)
to

S_["][< range >]|lu:]filename['']
without optional quotation marks about the filename and range, and
without specifying the disk's device number.

Where < range> is specified, the range may be stated either in hex
adecimal or decimal and is an INCLUSIVE range.

Examples:
S <$2000-3FFF>MYFILE - saves the area of memory from Hex

2000 through and including Hex 3FFF to the hard disk.
SAVE " < 1024-4096 >MYFILE", 8 - Saves the area of memory
from decimal address 1024 through and including location 4096 to
drive #8.
Note that USER# is NOT presently a SAVE operation.

7-11

SCRATCH
command
Syntax: OPEN lfn,dev,sa,"S[lu][user:]:filename"

Mode: Direct or Run via channel 15
The SCRATCH command is available in the Run mode only via the
command/error channel.

Note that the colon following the LU number is NOT optional.

In the Direct mode, the ERA command discussed later in this manual
performs the SCRATCH function.
SCRATCH deletes the NEXT file encountered on the hard disk which
qualifies according to the filename. This mode differs from the 1541
floppy disk equivalent in that the 1541 SCRATCH command deletes
ALL filenames qualifying according to the filename given.

This limitation may be overridden via CONFIG for applications which
require pattern-match scratching capabilities.

7-12

SEARCH key
command

From BASIC
Syntax: match search SYS
64628:3,lfn,directory,Stringvar,recl,rech,status
greater-than search

SYS 64628:4,lfn,directory,Stringvar,recl,rech,status

less-than search
SYS 64628:5,lfn,directory,Stringvar,reel,rech,status

lfn is the logical file number of a KEY file already OPENed on the
hard drive.
directory is the number (1-5) of the selected key DIRECTORY within
the KEY file.
Stringvar contains the key for which you wish to search.
On return from the SYS
reel and rech will contain the double-precision record number
associated with the first key to satisfy the SEARCH criteria,
status will contain a value to indicate the success or failure of the
SEARCH.
Please see the KEY files usage examples in Section DC of this manual
for detailed examples of SEARCH key.

For further descriptions of KEY file operations, refer to Section IX,
page 9-16 for information on machine language calls.

7-13

SHUFFLE key directory
command
From BASIC
Syntax: SYS 64628:7,lfn,directory,Stringvar,reel,rech,status
lfn is the logical file number of a KEY file already OPENed on the
hard drive.
directory is the number (1-5) of the selected key DIRECTORY you
wish to SHUFFLE.

On return from the SYS
status will contain a value to indicate the success or failure of the
SHUFFLE.

Please see the KEY files usage examples in Section IX of this manual
for detailed examples of SHUFFLE.

For further descriptions of KEY file operations, refer to Section IX,
page 9-16 for information on machine language calls.

7-14

VIII.
DIRECT-MODE FEATURES and COMMANDS

tt
command

Syntax: T T
The T T command restores all your CONFIG'd DEFAULTS for the
CPU mode under which you are presently operating.

This is provided as a quick and easy way to return to your 'home'
LU/User and colors when you have moved elsewhere on the system,
or when a 'break' has changed your screen colors.

8-1

ACTIVATE
command
Syntax: ACTIVATE

ACTIVATE totally erases an existing logical unit and creates a new
'BAM' and 'INDEX'. ACTIVATE also gives you the opportunity to
create a DOS IMAGE FILE to enhance operating speed on LU's
physically distant from the DOS LU (lu 10).

DO NOT USE THIS COMMAND UNTIL YOU HAVE
THOROUGHLY READ AND COMPLETELY UNDERSTAND THE
ACTIVATE and CONFIG PROCESSES.

ACTIVATE must be run ONLY AFTER the LU 'type' has been
assigned via CONFIG.

ACTIVATE and CONFIG are discussed in detail in the 'PROGRAM
MING CONSIDERATIONS' chapter (section IX) of this manual.

8-2

AUTOCOPY
command

Syntax: AUTOCOPY

This self-documenting command allows you to rapidly copy multiple
fdes across LU and USER boundaries.

8-3

AUTODEL
command
Syntax: AUTODEL

AUTODEL is self-documenting, and allows you to rapidly delete
multiple fdes from a specified lu/user area. If you wish to delete ALL
files from an existing LU, ACTIVATE is faster.

8-4

AUTOMOVE
command

Syntax: AUTOMOVE

AUTOMOVE is a self-documenting command which allows you to
rapidly MOVE files from one USER sub-directory of an LU to
another USER sub-directory of the same LU.

8-5

BUILD
command
Syntax: BUILD filename,nrecs,reel

filename is any legal 1541 filename
nrecs indicates the number of records to be formatted (65535 max)
reel indicates the length in bytes of each record (3072. max)
The maximum allowable size of any one file on the Lt. Kernal system
is 32768 hard disk blocks of 512 bytes, or 16.78 mega-bytes.

BUILD is similar to the 1541 RELative-file formatting function in that
it creates a relative file 'formatted' with a number of fixed length
records. Unlike the 1541 which requires that you OPEN and POSI
TION within a relative file to format it, BUILD is a direct mode com
mand, and is EXTREMELY FAST.

The Lt. Kernal will also format a relative file using the 1541 OPEN
and POSITION syntaxes, but more slowly than when using BUILD.

8-6

BUILDCPM
command

Syntax: BUILDCPM

BUILDCPM sets up necessary machine status to construct a CP/M
operating system on the CP/M DEFAULT LU you have previously
defined via CONFIG.

You must have previously defined a CP/M default LU, and MUST
have ACTIVATEd it prior to invoking BUILDCPM.

You must be in the 128 mode to invoke BUILDCPM.Please refer to
Section 'Using CP/M on the Lt. Kernal' prior to using this
command.

Refer to Section XIII, page 13-1 for the installation of CP/M on the
Lt. Kernal.

8-7

BUILDINDEX
command
Syntax: BUILDINDEX

BUILDINDEX builds a KEY fde with up to five DIRECTORIES of
keys. Necessary information about the file will be requested by
BUILDINDEX as required.

You will first be requested to supply the name of the new KEY file to
be built.

You will then be requested to specify how many DIRECTORIES (lists
of keys) the file will hold. Once a KEY file is built, the number of
directories within it may not be changed. You must build at least one
directory, and you are limited to five within any one KEY file.

You will be requested to supply the KEY LENGTH for each direc
tory. This specifies the permanently fixed length of the key strings
contained within each of the directories. Each directory's key length
may be different and may range from 1 to 30 characters.

Once you have supplied the key length for the last directory specified,
BUILDINDEX will create the KEY file.

Please see the KEY file usage examples in Section IX of this manual
for detailed examples BUILDINDEX.

CHANGE
command

Syntax: CHANGE [lu:][user:]filename

CHANGE allows you to change several characteristics of a file. You
may CHANGE the:

Filename
User number
Load address
'Dirty flag' (archiving bit)
M/L or BASIC program types

8-9

CHECKSUM
command
Syntax: CHECKSUM

CHECKSUM totally checks the intergrity of the DOS on LU 10 and
forces an UPDATEDOS of all LU's on which Lt. Kernal DOS image
files exist.

8-10

CLEAR
command

Syntax: CLEAR

CLEAR permits you to clear the 'dirty-flags' of all files in a specified
LU/USER area. CLEAR will request the LU and USER parameters
from you at the appropriate time. To clear the dirty-flag for a single
file, use the CHANGE command.

Dirty-flags (archiving bits) are the mechanism the Lt. Kernal uses to
do archival backups to floppy disk. Whenever a file is either created
or modified, the Lt. Kernal sets a 'flag' bit in that file's directory en
try saying that the file has been modified. Only performing a backup
copy of the file via FASTCOPY, or executing the CLEAR command
will erase that bit. Files with the archiving bit set may be selectively
listed with DIR by using the C option.

8-11

CONFIG
command
Syntax: CONFIG

CONFIG allows the user to establish custom system characteristics for
the Lt. Kernal.

System characteristics affected are

CONFIG menu colors
Logical Drive sizes
Logical Drive 'types' (regular or
CP/M)
C-64 Screen color
C-64 Border color
C-64 Character color
128 40 column Screen color
128 40 column Character color
128 40 column Border color
128 80 column Screen color
128 80 column Character color
Default device #
Default LU #

Default USER partition
Beep enable
Printer Codes
Autoaccess enable
Scratch override
CPU reset mode (C-64, 128, or
CP/M)
CPU speed in 128 mode
C-64 mode KEYPAD enable on
128
Interrupt Traps
Multi-user index locking
CP/M Default LU

In addition to all these things, in a multi-user system, the 'master' user
may configure these items for EACH of up to 16 separate CPU's con
nected to the system. CPU's OTHER than the 'master' may only
change their OWN CONFIG parameters.

The following is a list of the default parameters:

LU# Beg. Cyl # of Cyl

DOS 0000 30
0 0030 200
1 0230 200
2 0430 166

8-12

COPY
command

Syntax: COPY ["] [lu:] [user:] [newfilename] = [lu:] [user:]oldfilename['']

Mode: Direct or Run

COPY creates a new file copied from oldfilename into newfilename.
Copy will copy fdes across logical unit (logical drive) boundaries to
the currently active subdirectory (user #).
The syntax in RUN mode is:

OPEN lfn,dev, 15,''C[|u]:destfile = [|u:]sourcefile''

Note that almost all the COPY parameters are optional. Several syn
taxes will accomplish a COPY of a file.

1. COPY THISFILE = THATFILE
will copy the file named THATFILE into a new file called
THISFILE on the logical drive on which you are currently
working.

Now assume that you are 'logged' (working) on LOGICAL DRIVE #1
and working in User sub-directory 12 (1:12:).

2. COPY 2: THISFILE=THATFILE
will copy the file named THATFILE from logical drive 1 into a
new file called THISFILE on logical drive #2, User #12 (2:12:).

3. COPY 2: = THATFILE
will copy the file named THATFILE from logical drive 1 into a
new file of the SAME name on logical drive #2, subdirectory 12.

4. COPY 2:10:=3:5:THATFILE
will demonstrate the ability to copy from and to logical drives on
which you are NOT logged. The syntax above will copy
THATFILE from logical drive #3 subdirectory #5 to logical drive
#2, subdirectory #10 even though you are currently working on
logical drive #1, user 12.

5. COPY =3:THATFILE
will copy THATFILE from logical drive #3 to your currently
logged logical unit (2) and currently working subdirectory (12).

The optional quotation marks in the syntax definition for COPY are
allowed so that graphics characters may be included in the filenames.

8-13

D
command
Syntax: D[drvnum]

drvnum is the desired hardware device number of the hard disk
D is used to temporarily change the device number of the hard disk
from the CONFIGured default. D typed without a drive number will
cause the device number to revert to the power-on default.

8-14

DEL
command

Syntax: DEL line number or
DEL [beg. line] -[end. line]

DEL deletes BASIC program lines in memory. When the hyphen is
used to indicate a range-delete, at least one line number must be
given, (either beginning or end) to satisfy the range calculation.

8-15

DI
command
Syntax: DI

DI (display index) is a self-documenting command. DI displays all of
the active keys in the directories of a KEY file.

Please see the examples of KEY file usage in section IX of this
manual for detailed use of DI.

FILE TYPE DEFINITIONS
The Lt. Kernal DOS supports the Commodore conventions for file
type, such as "SEQ", "REL", etc., but uses within its own opera
tions a more finely divided set of file definitions. Each Lt. Kernal file
type is assigned a numeric type. The types are:

TYPE DEFINITIONS
1 CONTIGUOUS DOS system file

(i.e. INDEX and DISCBITMAP)

2 CONTIGUOUS DOS system processor
(i.e. DIR)

3 RANDOM DOS external system
processor (i.e. RENUM)

4 KEY file for indexed RELative files
(supports 5 key directories)

5-10 UNASSIGNED
11 BASIC language program file

stored block-list random

12 MACHINE LANGUAGE program file
stored block-list random

13 SEQUENTIAL FILE (i.e. editor text)
stored block-list random

14 USER FILE

15 RELATIVE FILE

8-16

DIR
command

Syntax: DIR_[[lu:[user:]]:[Tfiltyp][P][S][A][G]|C]_][filename]

DIR is a powerful directory command that allows a directory of the
* hard disk to be listed or optionally printed. Listings based on file type

or file name matches with wild-cards and don't-care characters are
supported. You may use either trailing OR leading wildcards in the
filename specification. The options are:

lu requests the logical drive # from which the DIRectory will be read
user requests the subdirectory on the requested lu.
Tfiltyp (type) filtyp is the numeric hard disk file type.
P (print) causes the listing to be printed
S (sort) causes the listing to be alphabetized
A (all users) lists from all subdirectories on the requested LU
G (global) lists from all subdirectories of ALL LU's
C (changed) lists only those files Changed or Created since the last
backup or CLEAR command was issued. The directory listing for any
file which reflects a 'changed' status will have an exclamation mark (!)
appended to the end.
The options may be used singly or combined in any order except that
the ':options' field must precede the file name specification, and that
the G and A options override the optional user #, and G automatically
implies the A option.

Examples:
DIR - causes a screen listing of all hard disk files in the current
LU/USER area in which you are operating.

DIR :P - causes a printed directory of all hard disk files in the current
subdirectory and LU.

DIR 1:4: MYFI - causes a directory of all files on LU 1 under sub
directory #4 whose names begin with the sequence 'MYFF. Note that
the trailing '*' is IMPLIED, and does not need to be entered.

DIR :T4A - causes a directory of all type 4 (KEY) files in all sub
directories of the current LU.

DIR :SG - causes a directory of ALL files on ALL LU's to be listed
in alphabetic order.
DIR *.ASM - causes a directory of all files whose names contain the
string '.ASM' anywhere after the first character.

DIR :C - causes a directory from the currently active LU and USER
subdirectory of all files which have been Created or Changed since the
last backup or CLEAR.

8-17

FULL OPTIONS EXAMPLE

This example uses all the options which may be meaningfully
combined.

Example:
DIR :T11SPGC ?YFIL* - causes an alphabetized, printed directory of
all BASIC programs on the hard disk which were created or modified
since the last backup or CLEAR, the first character of whose names
we do not care and whose names' next four characters are 'YFIL'.

8-18

DUMP
command

Syntax: DUMP [range][lu:]seqfile
range is the range of basic lines to dump in the form
startline#-endline#.
seqfile is the filename of the desired new text fde to be created.

DUMP causes a new sequential fde to be created then writes the de-
tokenized version of the BASIC program in memory into the sequen
tial fde.

DUMP turns BASIC programs into editable text files and also func
tions in both C-64 and 128 modes.

Example:
DUMP 200-250 l:myfile

would cause current BASIC lines 200 through and including 250 to be
written to the SEQuential file MYFILE on hard disk logical unit 1.

8-19

ERA
command
Syntax: ERA_[lu:[user:]]filename

ERA erases (scratches) the NEXT file from the hard disk which
qualifies according to the filename given. If the user: field is not sup
plied, then the file MUST exist on the currendy active subdirectory, or
the message "FILE BELONGS TO ANOTHER USER" will be
issued, and the ERAse will be aborted.

The 'pattern-match scratch override' discussed in CONFIG will not
cause ERA to delete multiple files. If you wish to delete several files
at once, then the AUTODEL command should be used.

8-20

EXEC
command

Syntax: EXEC_[lu:[user:]]filename

filename may be any valid TEXT fde stored as PRG, USR, or SEQ
formats.

EXEC provides an easy and natural way to automate procedures which
otherwise would have to be performed manually.
EXEC performs the commands and statements contained in the fde as
if they had been typed from the keyboard. EXEC files may contain
any characters which are legal to be typed from the keyboard. "Nor
mal" lines of text such as commands or lines of BASIC code should
be terminated with carriage returns. This is how most wordprocessors
store text.
EXEC is a direct-mode command which can supply input to running
programs and/or other direct-mode commands. EXEC may not work
properly with types of programs that "clear" the input buffer before
proceeding to the next input.

8-21

FASTCOPY
command
Syntax: FASTCOPY

FASTCOPY is a self-documenting, menu driven fde copy and
backup/restore utility. FASTCOPY will only work properly on a Com
modore 1541/1571 disk drive (or fully compatible clone).

The 1541/1571 disk drive MUST be assigned Drive #8 for
FASTCOPY to function.

FASTCOPY will allow you to
• BACKUP your hard disk or an LU/USER area of your disk to

diskettes rapidly
• RESTORE your hard disk or an LU/USER area from diskettes

rapidly.
FASTCOPY will report any floppy diskette errors encountered during
the copy process, but DOES NOT REPRODUCE DISKETTE ER
RORS ON THE DESTINATION DISKETTES. It is not intended for
use as a 'protected-disk' copier.

8-22

FETCH
command

Syntax: FETCH [lu:]filename

filename is a SEQuential text file image of a BASIC program (created
via DUMP).

FETCH causes a text image of a BASIC program to be reloaded into
memory in tokenized form for SAVEing as an actual program file.
FETCH is the reciprocal command to DUMP.

The use of these two commands in conjunction with one another
allows the programmer to utilize the features of a text editor to revise
and edit BASIC programs. The FETCH command functions for both
the C-64 and 128 BASIC.

For example: FIND /GOTO 650/, 100-650 will find any occurence of
GOTO650 between and including lines 100 and 650.

8-23

FIND
command
Syntax: FIND delimSTRINGdelim[< line-range >

Both delim characters are the same and NOT included in STRING.
FIND searches for and lists lines of BASIC in which the STRING is
found.

FIND will find combinations of TEXT and TOKENIZED BASIC and
ignores useless space embedded in BASIC command.

8-24

G 0 6 4
command

Syntax: G064 or GO 64
Mode: 128 direct

G064 sends the CPU to the C-64 mode of operation, and sets the
system parameters to the CONFIGed defaults for the C-64 mode.

Refer to Section XIII, page 13-1 for the installation of CP/M on the
Lt. Kernal.

8-25

G0128
command
Syntax: G0128 or GO 128
Mode: C-64 direct on 128*s only
GO 128 sends the CPU to the 128 mode of operation., and sets the
system parameters to the CONFIGed defaults for the 128 mode.

Refer to Section XIH. page 13-1 for the installation of CP/M on the
Lt. Kernal.

8-26

GOCPM
command

Syntax: GOCPM
Mode: C-64 or 128 direct on 128;s only
GOCPM sends the CPU to the CPM mode of operation IF a CP/M
LU has been defined and activated, and IF a CP/M operating system
has been built on the LU.

Refer to Section XHI, page 13-1 for the installation of CP/M on the
Lt. Kernal.

8-27

ICQUB (Image - Capturing Quick Utility Backup)
command
Syntax: ICQUB or filename

filename is the name of an auto-loader built by the ICQUB utility.
ICQUB (pronounced 'icecube') permits you to capture and save to the
hard disk certain copy protected software.

SOFTWARE CAPTURED BY ICQUB CANNOT BE USED ON
ANY OTHER COMMODORE COMPATIBLE DISK DRIVES.

ICQUB functions only in the C-64 mode. ICQUB is designed NOT to
be a 'pirating tool'. The 'copies' it creates of the protected software
require the Lt. Kernal hardware to be present in order for them to
run.
ICQUB does allow you to back up many of your own(ed) copy pro
tected software packages on the Lt. Kernal. It does so by allowing you
to load protected software into your computer from a floppy disk, then
capturing a running image of the program. This technique will not
allow you to run software which periodically re-checks its protection
scheme, unless you are willing to have the protected disk in your flop
py disk drive continually while using the captured copy.
Since ICQUB actually snap shots a running program, some software
which appears not to work when ICQUB'd may work if you choose
another time or stage of operation at which to capture the copy. Once
a working copy is captured, it should work every time. Don't give up
on a package just because your first try didn't produce a working pro
gram. Most software will ICQUB on the first try - but not all
packages will.

ICQUB is simple to use, and for the most part it is self-documenting.
Be sure that you are logged on to the LU on which you wish the cap
ture to take place before invoking ICQUB.

When you type the ICQUB command, you will be presented with a
menu. You may:

• Select from ICQUB files already on any LU
• Run the 'current' (last) capture file on this LU
• Assign a new name to the current capture file on this LU
• Capture a new program via ICQUB on this LU
• Return to Basic

OPTION #1
You will be presented with a files list similar to that which
AUTODEL and AUTOCOPY produce from which to select your
program. From this list you will also be permitted to select a file
for which to build an 'auto-loader'. Once built, the auto-loader may
be direcdy invoked just by typing its name at the READY prompt.

8-28

OPTION #2
You can test the current ICQUBCAPTUREFILE without bothering
to search the list above.

OPTION #3
You may give ICQUBCAPTUREFILE a new name. Actually,
ICQUBCAPTUREFILE is copied into the new fde so that
ICQUBCAPTUREFILE will not have to be re-built for option #4.
The new filename will be your own selected 12 character name
followed by the suffix " .ICQ" (i.e. MYFILECAPTUR.ICQ).

OPTION #4
You may capture a new program into ICQUBCAPTUREFILE. If
ICQUBCAPTUREFILE does not exist on the currently logged LU
when you select this option, it will be built. It may take as long as
a minute to allocate capture space. Once the space is allocated, the
computer will seem to 'reset', and return to a normal power-up
screen, as if the Lt. Kernal were NOT present.

This is the point at which you LOAD your protected software from
the floppy disk. When the program has progressed to the point at
which you wish to capture it, press the ICQUB button on your Lt.
Kernal Host Adaptor. When the capture is complete, the Lt. Kernal
will return to control.

Here's a brief hint on capturing. The ICQUB button performs much
the same function as the RESTORE key on your computer. An exam
ple will show you how that affects captures.

Let's say you have a wordprocessor running which always returns to
its 'main menu' when you press RUN/STOP and RESTORE
simultaneously. The proper way to capture that software would be to
allow it to get to a point where you COULD return to the main menu,
then to hold down RUN/STOP and instead of pressing RESTORE, to
then press the ICQUB button.

When the captured version is run, it will go directly to the main
menu! You will have to experiment. Each software package ICQUB's
a little differently.

OPTION #5
You may return to BASIC. Things will be a little 'messed-up' if
you attempt to get back to BASIC any way other than via option
#5, and you'll probably have to reset your computer to get back to
proper operation.

NOTE: Make sure your screen border color is NOT black or you will
get a blank screen. Use CONFIG to change to any other color.

8-29

invoke
feature
Syntax: [lu:][user:]filename

Any legal filename typed beginning in the first column of the screen
will cause the system to attempt to load and execute that file. The
INVOKE feature works for both BASIC and machine language pro
grams. Simply type the program's name, followed by a carriage
return.

8-30

L or LOAD
command

Syntax: LOAD "[lu:][user:]filename",dev[,sa]
dev is the drive selected
sa is the secondary address where

0 or none = BASIC load
and 1 = machine-language load

in the Direct-Mode, LOAD may be abbreviated to
L_["]|;iu:]filename["]

with optional quotation marks about the name and without specifying
either device number or secondary address.

when used in this abbreviated syntax, LOAD will load the fde at its
correct load address depending on the fde type.
Example: L LMYFILE - LOADs the program MYFILE from the hard
disk logical unit #1.

8-31

LKOFF
command
Syntax: LKOFF

L K O F F turns off the Host Adaptor and puts the computer in the mode
being used (C-64 or 128). It allows direct computer use without
disconnecting the Lt. Kernal. To go back to your Lt. Kernal, do a
system reset.

8-32

LKREV
command

Syntax: LKREV

LKREV reports the Lt. Kernal DOS Version number and release date.

8-33

LU
command
Syntax: LU[lunumb]

lunumb is the number of the logical unit on which you wish to begin
operation.
lunumb may range from 0-10 decimal.

LU typed without a number following will log you onto the power-on
default logical unit specified in CONFIG.

8-34

MERGE
command

Syntax: MERGE_[lu:]filename

filename is the name of any disk-resident BASIC program file.
MERGE can actually merge or interleave the lines of the specified
BASIC file on disk with the BASIC program currently in memory. If
you wish to append basic files using MERGE, RENUMber one or
both programs first so that the line numbers of the two do not conflict
with or interleave one another.

In the case of lines of the disk based program duplicating line numbers
of the program in memory, the lines from disk will replace lines of
the same numbers in memory.

Merge presently functions only in the C-64 mode.

8-35

OOPS
command
Syntax: OOPS

OOPS will attempt to recover the LAST file ERAsed, SCRATCHED
or SAVEd with replacement on the currendy logged logical unit into a
new file named OOPSFILE#. The # character will be replaced with a
digit from 1 to 9. Up to 9 OOPSFILEs may be created before you
MUST rename or delete some of them.

If any disk activity has taken place that makes it impossible to recover
the last file deleted. OOPS will report the file as unrecoverable. Only
the LAST file deleted is ever OOPSable.

It is important to remember that any SAVE or OPEN for writing or
appending AFTER a file is accidentally SCRATCHED or ERAsed will
make it impossible to recover the file via OOPS.

8-36

QUERY
command

Syntax: QUERY_[lu:]filename

QUERY will tell you all the pertinent information about the file re
quested. Depending on the file type of the file, the following file
characteristics may be described:

File size (hard disk blocks) LU #
USER # Lt. Kernal numeric file type
Commodore convention file type Hard disk file header address
records (REL files) Record length (REL files)
load address # keys/directory (KEY files)
directories (KEY files) # of active keys (KEY files)

8-37

RECOVER
command
Syntax: RECOVER

RECOVER builds the Index on the selected LU. The old 'system in
dex' file is deleted, then the entire LU is scanned for legitimate fdes.
Each file found during the scan has its name placed in the new index.

After the scan, validate is automatically run to check the integrity of
the new index and to rebuild the Bitmap for that LU.

8-38

RENUM
command

Syntax: RENUM[incr[.newstart[,oldstart-o]dend]]]

incr is the desired line increment over the RENUMbered range of
lines.
newstart is the line number to be assigned to the first line of the
RENUMbered range of lines.
oldstart-oidend is the range of OLD line numbers which you wish to
be RENUMbered. At least the hyphen and one old line number are re
quired to satisfy the range option,
i.e. 10-500 (all lines between and including 10 and 500)

or -350 (all lines from the start of the program up to and including
line 350)

or 510- (all lines after and including line 510)
If you specify a SINGLE line number without the hyphen, the effect
would be as if you had typed the range 'oldstart-63999'.

if no options are specified, the defaults will be set as if you had typed:

RENUM 10,10,0-63999

RENUM will renumber a BASIC program currendy in memory. If no
options are specified, the entire program will be renumbered. The
renumbered program will begin with line 10 and line numbers will in
crement by 10.

The options provide extremely powerful editing capabilities to BASIC.
Proper use of the options will even allow blocks of code to be moved
within a BASIC program.

Any error in GOTO or GOSUB targets which would make renumber
ing impossible will cause an error message along with a listing of the
line in which the error occurred. If any fatal renumbering error does
occur, the BASIC program will be returned unmodified so that you
may more easily debug the error. RENUM does not recognize the GO
TO variant of GOTO.

RENUM is very fast. A typically organized BASIC program 24
Kbytes long takes about 14 seconds to renumber. Most BASIC pro
grams are not nearly that long, and routine RENUMbering of short
programs is almost instantaneous.

RENUM will NOT preserve a machine language tail on the end of a
BASIC program. If you do RENUMber this sort of 'hybrid' program,
you will have to manually re-link the machine lanaguage portion of it.
Also. RENUM uses all of the BASIC space and parts of the memory
under the BASIC ROM for line and target buffers. Any programs resi
dent in those areas at RENUMber time will be destroyed.

8-39

The options are powerful enough to be somewhat dangerous if used
improperly, so some examples of RENUMber's use are appropriate.
Here is a review of the RENUM syntax.

Syntax: RENUM[incr[,newstart[,oldstart—oldend]]]

example 1. RENUM
Typing just RENUM without options will renumber the en
tire BASIC program in memory to a beginning line number
of 10 and with line numbers incrementing by 10.

example 2. RENUM 1
will renumber the entire program to a beginning line
number of 10 and with line numbers incrementing by 1.

example 3. RENUM 2,5000
will renumber the entire program to a beginning line
number of 5000 with line numbers incrementing by 2.

To demonstrate this command, the program:
10 REM THIS IS A LINE NUMBERING EXAMPLE
12 GOTO 15
15 PRINT "HELLO"
30 LET A = 1:PRINT A:GOTO 10

would be renumbered to this:
5000 REM THIS IS A LINE NUMBERING EXAMPLE
5002 GOTO 5004
5004 PRINT "HELLO"
5006 LET A=1:PRINT A:GOTO 5000

example 4. RENUM 1,10,5000-5004
To demonstrate this command, the program:

5000 REM THIS IS A LINE NUMBERING EXAMPLE
5002 GOTO 5004
5004 PRINT "HELLO"
5006 LET A = PRINT A:GOTO 10
5008 END

would be renumbered to this:
10 REM THIS IS A LINE NUMBERING EXAMPLE
11 GOTO 12
12 PRINT "HELLO"
5006 LET A = 1:PRINT A:GOTO 10
5008 END

8-40

EXACTLY the same effect could have been produced by typing:

RENUM 1,10,-5004

You could complete the renumbering of the last result by
typing:

RENUM 1,13,5006—

which would yield:
10 REM THIS IS A LINE NUMBERING EXAMPLE
11 GOTO 12
12 PRINT "HELLO"
13 LET A=1:PRINT A:GOTO 10
14 END

EXACTLY the same effect could have been produced by typing

RENUM 1,13,5006-5008 or RENUM 1,10
Now on to the very powerful and somewhat DANGEROUS subject of
moving lines via RENUM. You can actually edit your BASIC pro
grams using the full options list of RENUM to cause groups of lines
to be moved elsewhere in the program, but some cautions need to be
kept in mind.

FIRST, if you plan to move lines about in your program, SAVE a
current copy to disk before you start the changes. It is possible to ac-
cidently overwrite lines by mis-specifying options.

SECOND, if you actually PLAN to overwrite some lines, remember
that the lines PHYSICALLY encountered LAST in the renumbering
process will overwrite any lines of the same numbers which were en
countered earlier. Some examples will clarify this process.

example 5. Take the following program:

10 GOSUB 70:PRINT A
20 PRINT "THIS IS A BLOCK-MOVE EXAMPLE"
30 INPUT A
40 PRINT A
50 IF A < 10 THEN GOTO 110
60 GOTO 120:REM JUMP OVER SUBROUTINE
70 PRINT "THIS IS A FAVORITE SUBROUTINE OF

MINE"
80 PRINT "WHICH I SHOULD REALLY MOVE

OUT OF THIS"
90 PRINT "AREA OF THE PROGRAM"
100 A=0:RETURN
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END

8-41

typing RENUM 1,5000,70-100 would yield:

10 GOSUB 5000: PRINT A
20 PRINT "THIS IS A BLOCK-MOVE EXAMPLE''
30 INPUT A
40 PRINT A
50 IF A< 10 THEN GOTO 110
60 GOTO 120:REM JUMP OVER SUBROUTINE
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END
5000 PRINT "THIS IS A FAVORITE SUBROUTINE OF

MINE"
5001 PRINT "WHICH 1 SHOULD REALLY MOVE OUT

OF THIS"
5002 PRINT "AREA OF THIS PROGRAM"
5003 LET A=0:RETURN

The lines from 70 through 100 actually moved. Be careful, though,
because this process could also modify your program's flow.

We could INTENTIONALLY overwrite part of the program like this:

Taking the same original program as above:

10 GOSUB 70: PRINT A
20 PRINT "THIS IS A BLOCK-MOVE EXAMPLE"
30 INPUT A
40 PRINT A
50 IF A< 10 THEN GOTO 110
60 GOTO 120: REM JUMP OVER SUBROUTINE
70 PRINT "THIS IS A FAVORITE SUBROUTINE OF

MINE"
80 PRINT "WHICH I SHOULD REALLY MOVE OUT

OF THIS"
90 PRINT "AREA OF THE PROGRAM"
100 A=0:RETURN
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END

8-42

Typing RENUM 10,10,70-100 would yield

10 PRINT "THIS IS A FAVORITE SUBROUTINE OF
MINE"

20 PRINT "WHICH I SHOULD REALLY MOVE OUT
OF THIS

30 PRINT "AREA OF THE PROGRAM"
40 A=0:RETURN
50 IF A< 10 THEN GOTO 110
60 GOTO 120:REM JUMP OVER SUBROUTINE
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END

Note that the original lines 10-40 were overwritten by old lines
70-100. More specifically, since lines 70-100 were encountered LAST
in the program with the new line numbers 10-40, they took
precedence, and overwrote any earlier encountered lines of the same
numbers.

As a final example of the same effect, let's take example 5 program
once more:

10 GOSUB 70:PRINT A
20 PRINT "THIS IS A BLOCK-MOVE EXAMPLE"
30 INPUT A
40 PRINT A
50 IF A < 10 THEN GOTO 110
60 GOTO 120:REM JUMP OVER SUBROUTINE
70 PRINT "THIS IS A FAVORITE SUBROUTINE OF

MINE"
80 PRINT "WHICH I SHOULD REALLY MOVE OUT

OF THIS"
90 PRINT "AREA OF THE PROGRAM"
100 A=0:RETURN
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END

8-43

Typing RENUM 10,70,10-40 would yield:

50 IF A< 10 THEN GOTO 110
60 GOTO 120:REM JUMP OVER SUBROUTINE
70 PRINT "THIS IS A FAVORITE SUBROUTINE OF

MINE"
80 PRINT "WHICH I SHOULD REALLY MOVE OUT

OF THIS"
90 PRINT "AREA OF THE PROGRAM"
100 A=0:RETURN
110 PRINT "A IS LESS THAN 10"
115 GOTO 130
120 PRINT "A IS GREATER THAN OR EQUAL TO 10"
130 END

The lines 10-40 WERE actually renumbered to the range 70-100, but
since other lines of the same range were encountered LATER in the
renumbering process, they were replaced.

We could have protected against accidential overwriting of lines, but
the power of having that capability strongly outweighs the dangers.
We do suggest, though, that you be VERY careful with the range op
tion of RENUM until you become comfortable with what it can do.

Any time lines are moved with RENUM, the message
RE-ORDERING DISPLACED LINES'

will appear. If the program is quite large and the lines have moved to
very near the beginning of the program, the re-ordering process could
take several minutes.

RENUM presently functions only in the C-64 mode. The 128 has a
built-in renumber function.

8-44

s
command

Syntax: S
The S command is a special direct-mode implementaion of SAVE. S
allows easy and fast re-saving with replacment of a BASIC program
presendy being edited.

For any BASIC program which has been LOADed (via LOAD or the
L command) and edited, merely typing S and carriage return will
cause the program to be re-SAVEd under the original file name. Also
see SAVE command for the abbreviated S syntax with a fde name
supplied.

8-45

SAVE
command
Syntax: SAVE "[<range>]|lu:]filename",dev

dev is the disk selected onto which to save the file.
SAVE may be abbreviated in the Direct-mode to:

S _ ["] [< range >] [lu:] filename['']
with optional quotation marks about the filename and without specify
ing the disk's device number.

Where < range> is specified, the range may be stated either in hex
adecimal or decimal and is an INCLUSIVE range.

Examples:
S < $2000^1000 >MYFILE
—saves the area memory from Hex 2000 through and including Hex
4000 to the hard-disk.
SAVE " < 1024-4096 >MYFILE",8
—saves the area of memory from decimal address 1024 through and
including location 4096 to drive #8.

8-46

SHIP
command

Syntax: SHIP

SHIP causes the hard disk's heads to be moved to the proper zone for
shipping. THIS COMMAND MUST BE EXECUTED PRIOR TO
MOVING OR SHIPPING YOUR HARD DRIVE.
Simply type SHIP and carriage return, and wait for the drive message,
"PREPARED FOR SHIPPING" to appear. WAIT an additional 30
seconds and then turn your Lt. Kernal OFF. This 30 seconds of inac
tivity will completely park the head of the Miniscribes drives.

You may then transport the system.

In a multi-drive system, SHIP parks the heads of ALL drives.

8-47

TYPE
command
Syntax: TYPE_[lu:]filename

TYPE causes any file specified in the filename to be listed to the
screen WITHOUT disturbing the present contents of BASIC memory.

The TYPE command is very valuable for extracting portions of disk-
resident BASIC programs for use in a program presently being edited.

Type is also useful for displaying the contents of relative and sequen
tial files. Type will display Program and User fles, but usually their
contents will be meaningless as displayed text.

8-48

UPDATEDOS
command

UPDATEDOS updates the DOS image files which you may have in
stalled on various LUs. It is run after one or more LU partitions have
been created via CONFIG. Please see the section CONFIG for more
detail on this feature and DOS image files.

UPDATEDOS is automatically run whenever required.

8-49

USER
command
Syntax: USER[_user#]

user# is a decimal number in the range 0-15
USER causes you to be 'logged' into the requested subdirectory of the
LU on which you are currently working. Subsequent DIR's, SAVE's,
or COPY'S will be directed to/from the requested subdirectory sup
plied in the user# field. USER typed without a specified # will cause
you to log into the CONFIGured power-up default subdirectory.

8-50

VALIDATE
command

Syntax: VALIDATE

VALIDATE operates on the currently selected LU, performs 60 in
tegrity checks on each fde in the LU, and completely rebuilds the
BAM (Discbitmap) for the LU.

8-51

This page intentionally left blank

8-52

IX
PROGRAMMING CONSIDERATIONS FOR

THE LT. KERNAL DOS

The Lt. Kernal DOS was written specifically to satisfy the needs of
the business or scientific software developer and to supply an excellent
target system on which that new software might be run. In almost
every instance, BASIC programs developed for the 1541 floppy disk
will operate under control of the Lt. Kernal DOS. Machine language
programs require some special precautions to be completely inter-
changable between the Lt. Kernal system and a 1541 environment.

Both BASIC and machine language programs can benefit from the
'speed tip' offered later in this section. Limitations on machine
language and BASIC programs are few and well defined at the time of
the writing of this manual.
Here are some general precautions to observe when programming the
Lt. Kernal system:
1. BASIC programs should be modules which DO NOT contain

machine language 'auto-boot' code at addresses lower than the
'normal' BASIC start address. Low memory auto-loaders can be
used, but programs containing them CANNOT BE DIRECTLY
INVOKED; they must be loaded via LOAD or L to function.
Machine language 'tails' appended to the end of BASIC programs
are perfectly acceptable. BE AWARE, however, that various com
mands such as RENUM, MERGE, and FETCH will destroy or
modify the machine language parts of such 'hybrid' programs. The
machine language portions of such software will have to be re
linked to the BASIC portion after the BASIC portion has been
edited. (This same limitation occurs in a 1541 environment)

Machine language programs should not modify the stack pointer.
This practice, although frequendy used, is generally considered by
professionals to be a programming 'trick', and is not considered to
be good programming practice. With the Lt. Kernal in control,
modifying the stack pointer (other than by balanced pushes and
pulls) will nearly guarantee that the Lt. Kernal cannot properly in
tercept disk service requests. There ARE ways around this and we
encourage you to experiment CAREFULLY.

9-1

3. Machine language programs should always use the 'KERNAL
VECTORS' to request system or disk service. The KERNAL
VECTORS are a set of indirect jumps or JSR's to various KER
NAL ROM routines. When the computer ROM operating system
was written, it was intended that programmers use these vectors if
they wished to use ROM subroutines. The Lt. Kernal DOS sup
ports that convention.
Although you are free to use ROM routines by IMPing or ISRing
to undocumented entry points within ROM, we cannot guarantee
that hard disk requests will be properly intercepted by the Lt. Ker
nal DOS unless you use ONLY the KERNAL VECTORS for such
requests.

4. The Lt. Kernal DOS intentionally does NOT support RANDOM
reads and writes to the hard disk by track and sector. The 'U' er
ror channel commands are not supported to prevent damage to the
DOS itself. We can provide other secure ways to protect pro
prietary software on the Lt. Kernal to authorized third-party soft
ware developers.

5. Presently, the Lt. Kernal DOES NOT support the Serial Vectors
($FF93-FFB4).

Backup Copying

Any system of software worth using is also worth protecting. Backup
copying is the only method available to secure your programs and data
against loss.

We have expended every effort to make sure that the Lt. Kernal DOS
and the hard disk system hardware will be reliable. Even with that
effort, WE CANNOT ASSURE that your system will not fail some
day. If the system does fail, it is possible that any data or programs on
the hard disk at the time of the failure will be lost.

COPY YOUR IMPORTANT FILES TO DISKETTE as often as
necessary to enable you to recover in case your fdes are lost or
accidentally erased. We have provided methods for you to perform
backup copying.

For a moment, let's discuss the PROPER way to keep backups of your
system in order to minimize the chances of losing any data. The cor
rect process is sometimes known as 'DOUBLE GRANDFATHERING'
or 'ALTERNATE' backup.

Say for discussion's sake that you do daily backup's (if you're keeping
business data on your hard disk, you should!). On Monday evening,
you copy your system and label the diskettes 'MONDAY'. After Tues
day's work, it's time for another copy to be done. On Tuesday even
ing, you MUST USE A NEW SET OF DISKETTES.

9-2

Rule 1
NEVER, NEVER, NEVER, NEVER DESTROY your MOST
RECENTLY SUCESSFUL BACKUP!!!

Once you have completed Tuesday's copy, you label the diskettes
'TUESDAY' and store them as well in a different physical location
than Monday's copy.

Rule 2
ALWAYS STORE ALTERNATE BACKUPS IN DIFFERENT
PHYSICAL LOCATIONS (preferrably in different buildings).

This is simply to ensure that even a catastrophy like a fire would only
lose for you at the most TWO working days of data.

On Wednesday, you can re-use Monday's diskettes; Tuesday's copy is
now your most recent backup and is the one which must be protected
most carefully. Each day you alternate sets of diskettes.

If you do serious business processing on your Lt. Kernal, make up
two sets of labels for your two (at least two) backup copies. Make
each set a different color. Next, make a calendar of your copying
schedule, marking the COLOR of the set to be used on each data pro
cessing day. Make sure you truly alternate colors.

For instance: If you started this Monday with RED and you work five
days a week, NEXT Monday had better be a BLUE day (no pun in
tended). Mark your calendar for about a month in advance then stick
to it faithfully.

IF YOU HAVE A REAL DATA EMERGENCY AND HAVE
FOLLOWED YOUR BACKUP SCHEDULE, YOU ARE RELATIVE
LY SAFE - BUT - IF A HARDWARE PROBLEM IS WHAT
DESTROYED YOUR DATA - DON'T RISK A GOOD COPY OF
YOUR DATA FOR ANY REASON UNTIL YOU ARE SURE THE
PROBLEM IS COMPLETELY SOLVED AND THE SITUATION IS
SAFE.

Floppy disk copying is just plain slow. To help relieve the slow disk
pains, we have provided a program called FASTCOPY which is
1541/1571 specific to copy to and from floppy disks more quickly.
FASTCOPY will copy a full diskette by filename in about two
minutes. Even at that speed, and swapping diskettes as fast as your
hands can move, it takes about four HOURS to copy a full twenty
megabytes. Usually, though, your disk won't be completely full, so the
copy will take less time than that. FASTCOPY is self documenting:
Just follow its instructions. Remember, though that FASTCOPY is

9-3

designed just for Commodore 1541 and 1571 disk drives. If you own
another brand or model, you may have to resort to a program such as
COPY-ALL'.64L (supplied on the Lt. Kernal). COPY-ALL works

fine but takes a
L O N G time to copy 20 megabytes (we won't scare you with HOW
long).

If your Lt. Kernal disk system is full, our FASTCOPY utility offers a
nice alternative copying feature which is safe as long as it is used with
discretion. This feature is ARCHIVAL COPYING.

Archival copying is nothing more than the process of copying only
those files which were modified since the last copy was done. Your
copy takes less time because there are fewer files to copy. AR
CHIVAL copying does have a pitfall.

Unless you keep EVERY consecutive archival copy you've ever made
since the last COMPLETE copy of your system, you might not be
able to recover from a major data loss. The solution is simple:
Establish a regular schedule during which you normally do AR
CHIVAL copies, but in which you also do COMPLETE copies at
regular intervals.

A good regimen to follow is:
A COMPLETE copy of ALL FILES once a week (or two weeks
according to the importance of your data

and
Archival copies every day or so between the complete copies.

Make sure to label and retain ALL the archival copies made until you
have safely made a complete copy.

Again, FASTCOPY is self-documenting, and will take you through
either a complete or archival copy automatically.

PLEASE BACK UP YOUR DATA
AND PROGRAMS REGULARLY

With a hard disk's tremendous capacity, any data loss can be a HUGE
data loss. Backing up regularly will protect you.

Directly Invoked Applications

With the Lt. Kernal DOS in effect, you can cause any program to be
loaded and run simply by typing its name and pressing 'RETURN'.
There are just a few precautions you must observe in order to make
sure your programs may be directly invoked.

BASIC programs are no problem at all. Any BASIC program (and
most compded BASIC programs) will run unmodified under the direct
invocation feature of the Lt. Kernal DOS. Machine language programs
require that three constraints be observed.
1. Machine language routines must have the same LOAD address and

ENTRY POINT (the address to which you would normally SYS).
Even if a routine you wish to direcdy invoke does not meet this re
quirement, it is a simple task for any machine language (assembly
language) programmer to 'patch' your program to meet this
specification.

2. The routine MUST NOT over-write the 'stack' (memory addresses
SOIOO-SOIFF). Some 'AUTO-BOOT' loader programs do write
over this area of the computer's memory, and they cannot be direct
ly invoked. They will only work by LOADing them with the FULL
Commodore LOAD syntax.

ANY routine must use the 'KERNAL VECTORS' (between $FFCO
and SFFFF) for any system calls which require disk access. This re
quirement was set down by Commodore Business Machines when they
provided the BASIC operating system in your computer and the Lt.
Kernal DOS adheres to that standard.

AUTOSTART applications should follow the same guidelines as
Direcdy Invoked applications.

'STACK' manipulation
It is usually considered a programming 'trick', and not good practice
to alter the 6510's stack pointer in machine language routines.
Sometimes, however, stack pointer manipulation is the most expedient
way to assure that subroutines with multiple exit points stay in control.
If your routines must alter the stack pointer, then you must preserve
the return pointer residing on the stack when your routine first gets
control. The Lt. Kernal DOS does a 'JSR' to any routine direcdy in
voked, and expects the return address to be on the stack at the ap
propriate place when your routine does its final 'RTS' back to system
control.

Reserved Memory Areas
Although the 'stack' should not be altered without observing the
previously mentioned constraints, no other single byte of RAM is ever
required or modifed by the Lt. Kernal DOS (without replacing its EX
ACT contents).

9-5

Speed Tips
The Lt. Kernal is faster than any other Commodore-compatible drive
because of its rapid parallel transfer scheme. However, the 'KERNAL'
operating system which Commodore provided with the computer does
introduce substantial overhead which slows access data that is read
from the files. The same holds true for the machine language routines
that use BASIN (Commodore's GET character routine) or BSOUT to
write data to files. There is a TREMENDOUSLY FASTER method
you may use in NEW applications.

Since the Lt. Kernal can access data files so rapidly, it is in the best
interest of speed that you save DATA as PRoGram files rather than as
SEQuential or RELative files. By LOADing or SAVEing data, you
may realize the full increase in speed that the Lt. Kernal offers over
the 1541 Commodore disk drive.

Even if you can't save data as PRoGram type files, the Lt. Kernal
DOS provides extremely fast access to records of data in RELative
files, and you may create indexes to individual records within
RELative files using the KEY file structure to further speed access. In
every instance possible, the use of RELative files instead of SEQuen
tial files will ensure that your application runs as F A S T as possible.
The Lt. Kernal is faster than ANY other Commodore compatible disk
drive on the market today. Make best use of its speed in your new
programs.

Disk Partitioning
As you receive your new Lt. Kernal system, the disk will be set up
with only four logical drives (LU 0, 1,2, and 10). The Lt. Kernal DOS
ALWAYS resides on LU 10. The rest of the possible eleven logical
drives (LU 1 - LU 9) will not be configured.

When you require more space and more logical drives for your ap
plications, we suggest that you initially CONFIGure the rest of the
hard disk into equal sized partitions until you get a good feel for the
space required by your applications.

You may subdivide the space beyond logical unit 10 (which always re
mains fixed in size) into as many as ten logical drives, or as few as
one logical drive. The CONFIG processor is the method by which you
may accomplish this. Study the CONFIG section of this manual
carefully and make sure you understand it all before you attempt your
first CONFIG. Be sure to RECORD AND SAVE your logical unit
parameters on paper: You'll need those parameters in order to
preserve files on logical units 0-9 if you ever do a SYSGEN to
upgrade to a newer DOS.

9-6

KEY FILE usage

This is one of the most complex subjects dealt with in this manual.
You do not have to be an expert computer programmer to use the Lt.
Kernal KEY files system: If you aren't an expert, though, you are go
ing to need to absorb a lot of new information in order to make full
use of this wonderfully powerful feature of the Lt. Kernal DOS.

We will supply you with examples of KEY file use, but it would re
quire another manual the size of this one to explore all the possible
uses for KEY files. If you wish to use KEY files on the Lt. Kernal to
their fullest potential, study one of the several fine DATABASE
MANAGER software packages available for Commodore computers,
then return to this section.
The KEY fde system on the Lt. Kernal makes available from BASIC a
complete KEYED INDEXED-RANDOM ACCESS METHOD for ac
cessing data.

YOU WILL BE ABLE TO BUILD VERY COMPACT AND EX
TREMELY POWERFUL CUSTOM DATABASE MANAGEMENT
PROGRAMS in BASIC using this file access system.

The Lt. Kernal KEY file system consists of two utility commands and
one system call (SYS) with seven modes of operation which can be us
ed to very rapidly search for and find specific data based on varied
and complex search criteria.

Originally the KEY file system was written for use in conjunction with
RELative files. Its use is not restricted, though. You can use KEY
files in any application where you need to associate TEXT STRINGS
with specific numeric values.

In the very simplest of terms, the KEY file system allows you to supp
ly a text string and associate a numeric value direcdy with that string.
When you later SEARCH for that string in the file, the SEARCH
command will return to you the value you previously associated with
the string.

That may sound very simple, indeed, but the applications to which that
can be put are amazing. Additionally, the Lt. Kernal KEY file opera
tions are VERY fast. Some remarkable database management programs
can be written in just a few lines of BASIC, and they operate at nearly
the speed of machine language programs.

Let's define a few terms, then go on to actual uses of KEY files.
KEY - is a literal string or string variable containing from one to thir
ty characters. The KEY is the basic 'element' of KEY files. Keys are
the strings for which you will SEARCH in your applications. Depen-

9-7

ding upon the methods you use, a KEY may end up being used to
refer to specific data, or may be used to point to yet another list of
KEYS.

DIRECTORY - When used in the context of KEY files, a directory is
a list of UNIQUE keys within a KEY file. A KEY file may contain up
to five DIRECTORIES of keys. Keys within a single directory must be
UNIQUE.

Record Number - is the NUMERIC value in the range 0-65535
directly associated with each KEY within a DIRECTORY. This is the
number returned to you when a SEARCH for a particular KEY is suc
cessful. It is supplied BY you when INSERTing a new KEY in a
DIRECTORY, or when DELETEing a KEY.

Reel and Rech - are the low-byte and high-byte representation of the
Record Number.

Rech = INT(Record Number / 256)
Reel = Record Number-(Rech * 256)

INSERT - means to place a new, unique KEY in a DIRECTORY.

DELETE - means to remove a KEY from a DIRECTORY.
SEARCH - means to attempt to find a particular KEY within a
DIRECTORY.
Ifn - refers to the logical file number of a KEY file already OPENed *~
on the hard disk.

Status - is a single precision value returned as a result of the various
KEY file commands and which reflects the success or failure of the
command.

For really advanced programmers, only:

The structure of a KEY file is a B-tree with unidirectional links between
each of three search levels: coarse, medium, and fine. The coarse and
medium levels are NOT accessible via the KEY commands: only the
results of the operation after passing to the fine level are passed back
to your application. You can, however, create your own coarse-to-fine
levels of search by utilizing multiple DIRECTORIES within KEY files.

A KEY file example
First, let's set up a purely literal example of how KEY files work.
After that, we'll attack the actual commands, and give programming
examples. If you are an advanced programmer, and are already
familiar with keyed indexed-random file structures, you can skip this
section, and refer to the programming examples now.

We'll use a simple catalog/cross-reference as an example.

9-8

Assume you have just three items to catalog: a camera, a dishwashei,
and your pet dog.

First, in order to catalog these items, you need to decide what features
about them are important enough that you can remember to refer to
them by those characteristics in the future. Here's a list of unique
features you decide to use, and the KEYS you wish to create to
describe those features.

Hem characteristic key
camera Uses film film

takes pictures picture
very small small

dishwasher holds dishes dish
washes them wash
very large large

dog eats eat
makes a mess of the yard mess
medium size medium

The keys' we decided upon above are all single words, because
they're easy to remember. They don't have to be, though. The whole
statment "makes a mess of the yard" could be treated as a KEY also:
any text string up to 30 characters long can be a KEY.

Look at the keys above. The longest is seven (7) characters in length.
That becomes the 'key length', since all KEYs in a DIRECTORY
must be the same length.

So what do we do with the keys which are shorter than seven
characters? We 'pad' them with some known character that makes
them all seven characters long. As an example, let's use spaces (noted
by the ' ' character) to pad our keys. Padded, our keys look like
this:

item
camera

characteristic
Uses film
takes pictures
very small

key
film'
picture
small'

dishwasher holds dishes dish'
washes them wash'
very large large'

dog eats eat'
makes a mess of the yard mess'
medium size medium'

9-9

Now, we'll leave it up to your imagination to create a lengthy and
VERY complete description of each item above (no cheating, now;
describe the camera down to the last screw!), and save your descrip
tions in three boxes (disk files). Place the description of the camera in
BOX #1, the dishwasher description in BOX Wl, and a loving descrip
tion of your pet (including the cost of sod replacement last year) in
BOX #3.

We're ready now to create a KEY file. We do it here with another
box: a box labeled ITEMKEYS. We will INSERT keys into that box.
We'll need nine slips of paper to handle the nine 'keys' we defined
above.

On the left of each slip write the KEY (including any spaces padding
it to 7 characters), and on the right of the slip note the RECORD
NUMBER (the number of the item) to which the KEY applies (i.e.
eats applies to item #3, the dog). As soon as you complete the first
slip, drop it into the box. You've just INSERTed your first key.

One of the intentional constraints imposed on you when using KEY
files is that no two identical KEYS may be present in the same
DIRECTORY: every key must be unique. From now on, we're going
to have to carefully check every KEY already in the ITEMKEYS box,
to make sure we don't duplicate one, before we may INSERT another.

So write the next KEY slip, take ALL the slips already in the box out,
check them to make sure none EXACTLY MATCH the one you're
about to INSERT, and if the new key is unique, drop it and all the
other older slips back into the box. Repeat that boring cycle until all
nine keys are INSERTED.

Sound like a chore? It is, but in the Lt. Kernal KEY file system, that
check is made for you, instantaneously, every time you attempt to IN
SERT a key in a KEY file directory.

Now that you've built a KEY file FORGET EVERYTHING YOU
EVER KNEW ABOUT DOGS, DISHWASHERS, and CAMERAS.
Remember only this —
You know you've got three boxes describing things, and one box with
characteristics of things in it. Besides, you're not so forgetful that you
don't remember what a mess, or a picture, or a picture of a mess is.

Hmmm... 'picture' - a seven letter word. Let's look in the
characteristics box and see if there are any words spelled EXACTLY
like that (exact-match SEARCH). Yep, and it says to look in box #1.

Now you have recovered your memory about cameras! So let's try
'mess', a four letter word (indeed). Nope? No, but there was one
close: only it was seven characters long, padded with spaces. But
'mess' and 'mess ' MEAN the same thing, don't they? Sure, so

9-10

let's find the first KEY in that box higher alphabetically than 'MESS'
and see where it takes us (greater-than SEARCH).

Well, we came up with 'mess ', and it pointed to box #3. By gosh,
now that your memory returns about your pet, you remember the
yard!
Now you're getting the feel of it. All the characteristics in that box
are seven letters long. You remember the word 'dishes' and remember
to pad it out to seven characters, then go searching for it. No 'dishes'
slip is in there (exact-match failed). You do a 'greater-than' search,
and come up with 'eat '. Hey! that sounds good - but when you
look in the box it points to, you get the dog, again.

Next you look for the first slip LOWER alphabetically than
'dishes '(less than search), and this time you come up with
'dish ', pointing to box #2. That box describes the dishwasher, and
you've completely recovered your memory.

That's a pretty simple example, sure, but imagine it with hundreds of
items each with THOUSANDS of characteristics describing them. It
would take quite a while to search all those boxes, wouldn't it?

That's where the KEY file comes in. It takes only a fraction of a se
cond to search through any list of keys (DIRECTORY) using the Lt.
Kernal KEY commands. You can single out a box (data record pointed
to by a RECORD NUMBER) almost instantaneously, no matter how
many keys you have to search.

Already, you're probably seeing potential applications for this techni
que

You could budd a list of all your friends and business acquaintances,
and by budding several DIRECTORIES of KEYS (a single KEY fde
will hold five DIRECTORIES), you could cross-reference them by
hobby, birth month, city, state, and marital status—

and that is an almost trivial example!

Enough with rudiments. We know you want to get on to using KEY
files, so some rules for use and the command descriptions follow.

As we said before, there are two utility programs, and one SYS with
seven modes comprising the KEY files commands. The utilities are
Direct-Mode commands, the SYS's are designed to be used primarily
in the Run-Mode.

BUILDINDEX is the command which allows you to create a new
KEY file, and establish the KEY characteristics for it. BUILDINDEX
is self-documenting. There are just a few constraints to creating a
KEY file.

9-11

• A KEY must be no longer than thirty characters long: All keys
within a single DIRECTORY are built to the same length.

• The file may contain no more than five (5) DIRECTORIES of
KEYS.

• ALL DIRECTORIES within a given KEY file will contain the same
number of KEYS (max. 65535).

This needs explaining. Other than the fact that up to five KEY
DIRECTORIES may exist within a single KEY file, there is no
FUNCTIONAL relationship among them. They may contain KEYS
which are entirely unrelated.

However, because of the way in which KEY files are built, all
DIRECTORIES within a single KEY file will be built for the SAME
NUMBER OF KEYS ... That's important, because the longest
DIRECTORY you can create within a key file is directly dependent on
the length of the LONGEST KEY defined for that file.

A brief example will suffice to illustrate. If you built a KEY file with
FIVE DIRECTORIES, each with KEYS 13 characters long, you could
request a 'number of keys' as large as 65535. That's the maximum
number of KEYS you are ever allowed to build in any DIRECTORY.

At a key length of 14 characters, the number of KEYS PER DIREC
TORY begins to diminish. If you defined the key length as thirty (30)
characters, you could have no DIRECTORY longer than 6750 KEYS.
Now here's the rub. If four of the five defined DIRECTORIES within
a KEY file had key lengths of only 13 characters (allowing 65535
keys/directory), but the fifth had a key length of thirty, then the max
imum number of KEYS PER DIRECTORY will still be diminished to
6750 for ALL DIRECTORIES within that one file. That doesn't mean
that any space is wasted in the file. It's just a functional limitation of
BUILDINDEX.

Here's a table of maximum DIRECTORY lengths for different lengths
of KEYS.

KEY Max KEYS
length DIRECTORY

1-13 65535
14 59582
15 48778
16 43904
17 35152
18 31250
19 27648
20 24334
21 21296

KEY Max KEYS
length DIRECTORY

22 18522
23 16000
24 13718
25 11664
26 11664
27 9826
28 8192
29 8192
30 6750

The table is computed from the formula —
Nkeys = (INT(507 / (L+))T3) * 2

where L is the length in characters of the longest key, and
Nkeys(max) = 65535.

Another constraint on KEY fdes.
• Because of the manner in which KEYS are INSERTed in a B-tree, a

DIRECTORY should be constructed for about 20% MORE KEYS
than you expect to use.

This will GREATLY affect the speed of insertions when you have
many similar KEYS in a single DIRECTORY. Be conservative in
your estimates of needed keys: Twenty megabytes will hold a lot of
data.

The last limitation of KEY fdes —

• The space required to build a KEY file must be available in
CONTIGUOUS blocks on the LU on which it is to be built.
If there is enough space, but not sufficient CONTIGUOUS space
available on an LU for the KEY fdes you wish to build, the
method to get it all contiguous is:

AUTOCOPY all fdes to another LU.
ACTIVATE the LU you wish to clean up.
AUTOCOPY all the fdes back.

This performs a quick equivalent of the 1541 VALIDATE command.

Now a brief discussion of the other utility for KEY fdes. DI, then on
to the Run-mode commands.
DI (dump index) is provided as a convenience to KEY-fde program
mers. The same function could be written in BASIC, as we will show
later.

DI simply lists all active keys in a KEY fde. DI will prompt you for
the name of the KEY fde you wish to dump.

Key-File Run-Mode Commands
The general form of the KEY commands is:

SYS 64628:mode,lfn,directory,Stringvar,recl,rech,status

The parameters list may consist of variables or literal values, or a
mixture of both. The colon following the SYS address is required in
order to maintain C-64/C-128 compatibility.

9-13

The mode parameter defines what KEY command will be performed.
The modes are:

mode function
0 BUILD new KEY file

1 INSERT key
2 DELETE key

3 exact-match SEARCH for key
4 greater-than SEARCH for key
5 less-than SEARCH for key

6 not used

7 SHUFFLE directory

general: SYS 64628:mode.lfn.directory.Stringvar,reel.rech,status
The other parameters are. again:

lfn - refers to the logical file number of a KEY file already OPENed
on the hard disk.

directory - The number (1-5) of the directory within the file which
you wish to access.
Stringvar - A literal or variable string containing the KEY with which
you wish to operate. For SEARCH functions, this key should be padd
ed to the KEY-LENGTH of the directory chosen (usually with spaces
or nulls). INSERT will pad the KEY with nulls if you supply a
Stringvar shorter than the KEY length for that directory.
Reel and Rech - are the low-byte and high-byte representation of the
Record Number.

Rech = INT(Record Number / 256)
Reel = Record Number-(Rech * 256)

The Record Number is the NUMERIC value in the range 0-65535
directly associated with each KEY within a DIRECTORY. This is the
number returned to you when a SEARCH for a particular KEY is suc
cessful. It is supplied BY you when INSERTing a new KEY in a
DIRECTORY, or when DELETEing a KEY.

Status - is a single precision value returned as a result of the various
KEY file commands and which reflects the success or failure of the
command.

9-14

The status variable may change in meaning, depending upon which
KEY command you are using. See each command below for specific
status returns. The general definitions of the status values are:

status meaning

command was successful
(meaning of 'success' varies with
each command)

invalid directory #

variable by command

DIRECTORY Links corrupted:
!!!FATAL SYSTEM ERROR!!!!

or
File Already Exists (during BUILDKEY only)

variable by command

variable by command
file not open, or file opened
is not a KEY file

Status value 3 should never be encountered except during BUILDKEY
^*^> (mode-0). The only time links might be corrupted is when the com

puter is turned off (power failure) during an INSERT or DELETE
operation. If a status of 3 is EVER returned during any key file opera
tion except BUILDKEY, abort the application, and attempt to recover
as many KEYS from the file as possible into a new KEY file. After
recovery, ERAse the corrupted file.

In the command descriptions which follow, the GENERAL status
returns always apply. Only the variable statuses will be discussed with
each command.

The BUILDKEY file command -mode = 0
SYS 64628:0, lfn .directory, Stringvar, reel, rech, status

This command CREATES a new Key file. You must supply:
directory is the NUMBER OF DIRECTORIES (1-5) the new file is to

have.
Stringvar is the filename of the new KEY file CONCATENATED

_ with the ASCII STRING representation of the key lengths for
each desired directory.

9-15

For example, to create NEWFILE
with 3 directories with key lengths
of 20,254, and 80, Stringvar
would be:

'NEWFILE,20,254,80'
reel and rech are the number of keys the largest directory may hold.

For the above file, if you wished
there to be 245 keys in each direc
tory, then recl=245 and rech=0.

This is the only mode in which a status return of 3 is not FATAL!!
Status indicates that the filename you supplied already existed and can
not be built.

Machine Language KEY file access
The generalized form of KEY file access from machine language is
shown below. The process consists of establishing a Descriptor Table
of parameters to feed to the KEY system, then setting a Pointer to the
Table, and JSR'ing to the Lt. Kernal BASIC Extensions vector.

In both the C-64 and 128 modes of operation, the Kernal ROM must
be enabled at the time of the JSR. In C128 mode, the Keystring may
be stored in either BankO or Bankl, but the Descriptor Table MUST
be present in BankO.

Here is the calling process for KEY file access from machine
language:

BASEXT = $FC74 (64628.)

KEYCAL LDX #<DESTBL
LDY #>DESTBL
JSR BASEXT
BCC GOOD

ERROR STA ERRCOD

GOOD

low-byte of address of Decriptor Table
high-byte of address of Descriptor Table
execute KEY operation
if carry clear, operation was sucessful

.ACC contains ERROR code if carry set
on return
process error

continue with KEY file operations

9-16

DESTBL byte MODE
.byte LFN
.byte DIR#

.byte KEYLEN
word KEY ADR

word REC#

same MODE values as BASIC version
logical fde-number of OPENed KEY fde
DIRECTORY # of KEY fde to acess
(see note below)
length in bytes of KEY addressed next
memory address of KEY string
(low/high order)
RECORD NUMBER associated with KEY
(low/high order)

Just as in the BASIC versions of KEY fde access, any portion of the
Descriptor Table considered a 'return' value from the KEY operation
will be fdled in by the Lt. Kernal during Key operation.
The carry flag is cleared if there is no error, and set if an error occur
red. If any error occurred, then the accumulator will contain an error
value identical to the BASIC versions of the operation.

All registers are USED for communication to KEY operations, and
you may consider that ALL REGISTERS ARE MODIFIED by KEY
operations.

In C-64 operation, the Decsriptor Table MUST reside in BANKO, but
the KEY string may reside in either bank.

By OR'ing the DIR# value with $80, the Lt. Kernal is directed to seek
the KEY in ram-BANKl. A DIR# value less than $80 directs the KEY
to be found in BANKO.

This is the general form of machine language KEY fde access. The
MODE value and expected returns will change from mode to mode,
but will match those expected in the BASIC versions of KEY fde
access.

The INSERT key command - mode = 1
SYS 64628:1 ,lfn,directory,Stringvar,recl,rech,status

This command inserts a new, unique key into the selected directory. In
addition to the lfn # and directory #, you must supply:

The EXACT key to insert (length = key-len)

The record number in reel and rech to be associated with the KEY.

9-17

The variable status returns from INSERT are:
0 INSERT successful
2 invalid key length (key supplied is longer

than key length for directory)
4 DIRECTORY full - insert cannot occur
5 KEY already exists, cannot duplicate keys

If director, full status (4) occurs, a SHUFFLE may fix the condition:
more on that later.

If status 5 (key exists) is returned, you must either change the key you
supply, or DELETE the key from the directory, then re-insert it.

The DELETE key command -mode = 2
SYS 64628:2.lfn.directory,Stringvar,reel,rech,status

This command attempts to delete a key from the selected directory. In
addition to the lfn # and directory #. you must supply:

The EXACT key to delete (length = key-len)
The EXACT record-number in reel and rech already associated

with the KEY.

The variable status returns from DELETE are:
0 DELETE successful
2 invalid key length (key supplied is

longer than key length for
directory)

5 KEY not found, or record number
supplied does not match record
number already associated with
KEY found.

The SHUFFLE directory command - mode = 7
SYS 64628:7.lfn.directory,Stringvar,reel,rech,status

Because of the manner in which B-tree key insertions occur,
sometimes there will not appear to be an available slot for a new key,
even when sufficient space exists in a directory. SHUFFLE attempts to
re-order the KEYS in an existing directory to make slots available.

9-18

If an attempt to INSERT a key returns a status of 4 (directory full),
you should SHUFFLE the directory, and attempt the INSERT again.
If, after TWO ATTEMPTS to SHUFFLE and INSERT, the directory
full status is still returned, you may actually consider the directory to
be full.

You must supply:
The logical fde number of the KEY fde already OPEN.
The directory number of the directory you wish to SHUFFLE.

There are only two variable status returns from SHUFFLE:
0 SHUFFLE completed (NOT an in

dication that slots were freed up)
2 No keys in directory (SHUFFLE

not done)

The SEARCH commands

The SEARCH key command - mode = 3, 4, or 5
exact-match SYS 64628:3,lfn,directory,Stringvar,recl,rech,status
greater-than SYS 64628:4,lfn,directory,Stringvar,recl,rech,status
less-than SYS 64628:5,lfn,directory,Stringvar,recl,rech,status

The SEARCH commands allow you to very rapidly search a directory
for a particular key, based on variable criteria.

In addition to the logical fde and directory numbers, you must supply:

The SEARCH mode
and

The KEY for which to search (length < =key-len)
for exact-match, length = key-len

The variable status returns from SEARCH are:
0 KEY satisfying criteria found

2 invalid key length (key supplied is
longer than key length for
directory)

5 KEY satisfying search criteria
NOT found

9-19

SEARCH ALWAYS RETURNS THE KEY FOUND WHICH
SATISFIES THE SEARCH CRITERIA IN Stringvar, and the record
number associated with that key in reel and rech.
If no satisfactory key is found, Stringvar is unmodified, and reel and
rech are meaningless.

An exact match is satisfied when the KEY (including pad characters)
exactly matches the Stringvar in length, and character-by-character.

A greater-than match is satisfied when the first KEY logically greater
than the supplied Stringvar is found.

A less-than match is satisfied when the first KEY which is logically
less than the Stringvar supplied is found.

As an example of how to use KEY files on the Lt. Kernal, we're go
ing to build a dictionary application in BASIC. The dictionary will
hold up to 6750 words of up to 30 characters in length.

Each word will have a text definition keyed to it. The dictionary will
permit us to have a total of 65535 lines of 40 characters assigned to
definitions of words. Any single word may use up to 20 forty-
character lines for its definition.
When searching for a word in the dictionary, if the word is not found,
the dictionary will display the words alphabetically surrounding it, and
give you an opportunity to display the definition of one of them, or to
enter the new word into the dictionary.

If all that sounds like it will take a pretty large, slow BASIC program
to accomplish, you're in for a pleasant surprise! Not only does it take
only 39 lines of program to build such a dictionary, but it takes less
than one second to find any word already in it, or to determine that
the word is not there!

Because of the length of the example, the actual program appears in
APPENDIX i.

9-20

The CONFIG processor

CONFIG is a powerful (and potentially dangerous!) utility program
which allows you to set many system defaults. DO NOT use CONFIG
until you have become comfortable with the LU and User structure of
the Lt. Kernal. You may change several power-on characteristics of
the system including screen, border, and character colors, the hard
disk device number, the logical unit (logical drive) and user (subdirec
tory) onto which the system first 'logs' or establishes operation, and
the sizes of the various logical drives which the system may emulate.

For the most part, CONFIG is self-documenting, and will prompt you
through the changes it can accomplish. Once you exit CONFIG pro
perly, any characteristics of the system you have set will remain that
way EVERY TIME you turn on the power to your system.

Only a few points of CONFIG need explaining. The first is the 'beep
flag'. When the beep flag is set to 1 (one) the beeper is enabled. After
that, any time you issue a CHR$(7) through a BASIC print statement
or a byte of value 7 through the KERNAL's BSOUT routine, the Lt.
Kernal will issue an audible 'beep' through the monitor's speaker. This
feature is provided simply as a convenience to programmers so that
you do not have to maintain SID drivers in your C-64 programs just to
issue audible prompts.

When the beep flag is set to 0, CHR$(7) has no effect in the C-64
mode (the C-128 does its own beeps). This character is NOT reserved
in the Commodore-64 character set for any special purpose and is not
a printable character. Usually, it is desirable to keep the beep flag
enabled because all Lt. Kernal DOS error messages use the beep,
when enabled, to alert you that an error has occurred.

The second point of CONFIG explanation concerns the default logical
unit number. This point is only critical inasmuch as it affects the
AUTOSTART and CP/M features of the Lt. Kernal DOS.

When the Lt. Kernal first powers up, or after a hardware reset, it
FIRST switches to the logical drive defined in CONFIG and THEN
searches for a file by the name of AUTOSTART. If you wish to us
the AUTOSTART feature of the Lt. Kernal, make sure that the pr'
gram you have named 'AUTOSTART' resides on the same logic?
drive that you have named as the default in CONFIG.

9-21

The CP/M DEFAULT LU is that 'CP/M-type' LU which is presently
accessible via the GOCPM command.

You may define several of these LU's on your system, but only ONE
is accessible to GOCPM at a time.

The third point concerns the hard drive's default hardware device
number. The only special situation here is when the hard disk and a
floppy drive BOTH carry the same device number.

This is a special and very desirable situation, contrary to first ap
pearances. In this situation, any COMMODORE-SYNTAX LOAD re
quest directed to the system either through BASIC or the KERNAL
vectors will be directed first to the hard disk. If the file requested is
not found on the hard disk, the request will be AUTOMATICALLY
referred to the floppy disk (neat, huh?). Requests to load a file via the
Lt. Kernal's abbreviated 'L' load command, or by direct invocation
will not be referred to the floppy disk. The automatic referral of
LOAD commands only applies when both the hard disk and the floppy
disk carry the SAME hardware device number (usually 8).

If this 'AUTOACCESS' feature interferes with a particular application,
you may turn it off via CONFIG.
The last point of CONFIG to discuss is the most complex, and to a
degree, somewhat hazardous. The point at issue is the CONFIGuration
of logical unit (logical drive) parameters.

Briefly, let's discuss how the Lt. Kernal (and most hard disk systems)
allocate space on the disk.

In a floppy disk environment, space on a diskette is usually parcelled
out in units known as SECTORS or BLOCKS. A sector is the smallest
unit of data which a floppy disk may read or write at one time.

A hard disk also may read or write as little as one SECTOR of data at
one time: Hard disks, however, have HUGE numbers of sectors
available. In order to make those numbers more managable, most hard
disk systems allow you to allocate (set aside for future use) sectors in
groups. The largest number of sectors which may be accessed on a
hard disk without requiring any mechanical repositioning of the 'heads'
(the part which physically reads and writes data) is known as a
CYLINDER.

Thus, the CYLINDER becomes the smallest unit of storage which may
be allocated on the Lt. Kernal. Remember that allocating space doesn't
use it up; It only sets that space aside for use later. When programs or
files use that space, they use it on a sector-by-sector basis.

9-22

On the Lt. Kernal system, a CYLINDER contains 68 SECTORS, each
of which is twice the size of a 1541 sector (or block). The Lt. Kernal
stores data in 512-byte sectors, and the 1541 in 256-byte sectors. Since
a cylinder contains sixty-eight sectors, that is the minimum increment
of space you may allocate to a logical drive (LU).

The Lt. Kernal DOS resides on LU 10, and that logical drive is
always fixed in size at 30 cylinders; You may not change its size. All
other LU's (0-9) sizes are user-definable via CONFIG.

An LU or logical drive must contain at least enough space for the
'BAM' and 'INDEX' which constitute the directory storage area for
that LU. Since any Lt. Kernal LU may hold up to 4000 directory en
tries, the MINIMUM amount of space you must allocate for a new LU
is 16 cylinders, or 1088 hard disk blocks. After the creation of the
BAM and INDEX, which collectively use 272 blocks, that leaves 816
blocks available on the LU for your files. That works out to about as
much space as 2-'/2 full 1541 diskettes.

That's the minimum space you may allocate to a new logical drive.
You can allocate more space in CYLINDER increments, up to a max
imum 911 cylinders. Since that's more than the number of cylinders
available on a 20 megabyte drive, there is no practical limitation to the
size of a single LU, other than the remaining un-allocated capacity of
your drive.

CONFIG will not allow you to allocate less than 16 cylinders to a new
LU, nor will it permit you to allocate more space than that which is
available. Those restrictions are automatic - you don't need to do any
math to use CONFIG.

In CONFIG, when you select Fl to enter the set logical unit parameters
mode, the program will ask for the physical controller number and the
physical drive number that you want to CONFIG. For a single drive system,
the physical drive and the physical controller numbers are always zero (0).
For a system that is using add-on drives, the physical controller number
is the number of the drive you want ot CONFIG, (zero (0) for the original
drive, one (1) for the first add-on, two (2) for the second add-on, etc.).
The physical drive number is always zero (0), even for an add-on drive.

After you have entered these numbers, the program will respond with the
curent logical unit (LU) boundaries in table form. It will give you the cur
rent total cylinders available on the hard disk, the current total used, and
the current cyclinder boundaries of any already defined LU. From the fac
tory, the Lt. Kernal is set up with all cyclinders used. A 20 Meg drive has
a total of 596 cylinders; a 40 Meg has between 793-804 total cylinders depen
ding on the type of drive installed.

Up to eleven LUs (0-10) can be defined on a Lt. Kernal system.
CONFIG will allow you to establish new cylinder boundaries for any
LU with the following constraints—

9-23

No logical unit may ever overlap an existing logical unit. CONFIG
will prevent you from declaring any LU boundary which overlaps an
existing LU boundary. If you wish to expand a logical unit to a point
which will overlap an existing logical unit, you must first shrink the
conflicting LU in the appropriate direction. To shrink an LU, you
must first delete the LU's entry, then re-declare its boundaries.

IF YOU MOVE THE LOWER BOUNDARY OF AN ALREADY
USED LU, ALL FILES ON THE LU WILL BE LOST. If you shrink
an LU by moving its upper boundary, SOME files may be lost, depen
ding on how full (and how old) the LU is, and a NEW LU created
just above it may also be endangered.

The only safe way to re-define an LU's size is to AUTOCOPY all of
its files to another LU, redefine its size, ACTIVATE the LU, then
AUTOCOPY the files back.

The total cylinders ascribed to all logical units defined in CONFIG
may not exceed the total cylinders available on the hard disk. CON
FIG will prohibit this.

Now the one point of danger. CONFIG REQUIRES that YOU record
the logical unit parameters you have established. You may direct your
LU parameters to the printer or the screen, but once you have selected
a destination for the parameters, you MUST record and save them for
future reference!

RECORD AND SAVE your LU parameters list every time you change
LU parameters —

THIS IS YOUR RESPONSIBILITY!!!

With a 40 Meg system, the maximum number of cylinders in any one LU
is 511 whereas with a 20 Meg system, there is NO limit.

When you establish a NEW LU via CONFIG, you will be given the
option to create a 'DOS image file'. The DOS image file is an op
tional feature of the Lt. Kernal which tremendously enhances the speed
of file access on LU's physically distant from the DOS LU.

When the DOS is running, it must continually refer back to the DOS
LU to bring in DOS overlays (the term we use to describe the various
program modules of the DOS). Every time an overlay is required, the
disk drive must physically reposition its 'heads' from the LU you are
using to the DOS LU (lu 10), and then back again.

The further (in cylinders) your working LU is from the DOS, the
longer that process takes. In order to speed it up, we offer you the
ability to build a COPY of the run time modules of the DOS on each
LU you create. The pay off is a dramatic increase in speed of Lt. Ker-

' file access. The cost is space.

9-24

A DOS image file uses 222 hard disk blocks. In most instances, you
won't even miss this small (?!) amount of space. If your system is full
right up to the gills, though, you may opt not to create DOS image
files.

You may FORCE an update of the Lt. Kernal DOS image files on all
r LUs at any time. This is provided so that you may 'refresh' the DOS

images if you ever suspect one of them may have been corrupted (by a
power failure during a 'write' operation, as an example).

Simply issue the CHECKSUM command, and once it has been com
pleted, reset your system. As soon as the system boots back up, all Lt.
Kernal DOS image files will be updated automatically.

Once you have defined an LU, you may assign a 'type' to it. The
types are regular and CP/M. Since the ACTIVATE process operates
differently on the two types, you must assign a 'type' to an LU before
you ACTIVATE it.

Once you have defined a new LU or changed the size of an old one,
and exited CONFIG, you must run ACTIVATE which always totally
erases all fdes except DOS image fdes, and creates a new BAM and
INDEX on the LU. It is not safe to use an LU which has not been
ACTIVATEd, since an old BAM and INDEX may still exist which do
not properly reflect the new physical size of the LU. THIS COULD

^ \ EVEN ENDANGER AN LU PHYSICALLY ADJACENT TO THE
'BAD' LU. The only exception to this is when the EXACT original
parameters of an LU are re-established after a SYSGEN, as discussed
below.

One final note about CONFIG concerning doing a SYSGEN. The files
on LUs 0-9 will remain intact. Logical unit 10 is ALWAYS complete
ly overwritten by a SYSGEN.

We do not prohibit your using logical unit 10. In fact, the utility pro
grams you wish to be accessible from ALL other logical units should
be placed on LU 10. Remember, however, that LU 10 is COM
PLETELY ERASED AND REPLACED during a SYSGEN. Any pro
grams you wish to preserve on LU 10 should be copied to another LU
or to floppy disk before you do the SYSGEN.

THE SYSGEN UTILITY

Your Lt. Kernal DOS has already been installed on LU10 of the drive.
The SYSGEN disk is not shipped with your Lt. Kernal system. To
receive your SYSGEN disk as a back-up for the DOS already installed
on the Lt. Kernal, you MUST send in BOTH registration cards to
Xetec, Inc. and to Fiscal Information, Inc. Your serial numbered disk
will THEN be sent to you.

9-25

DO NOT do a SYSGEN UNLESS you have corrupted the DOS on
the Lt. Kernal.
If you think your DOS may be corrupt, you must do a CHECKSUM
before attempting to do a SYSGEN. CHECKSUM is a direct com
mand within the Lt. Kernal DOS that checks to see if the DOS on
LU10 is correct. The only time you should do a SYSGEN is after
running the CHECKSUM command and getting a message stating
CHECKSUMS DID NOT VERIFY.

To receive updates to the SYSGEN disk, you must have registered
your Lt. Kernal with Xetec, Inc. and Fiscal Information. Do not fail
to register.

Use the following steps to perform a successful SYSGEN on your Lt.
Kernal. Do not omit any step.

1. Make sure you have a 1541 or 1571 floppy drive (set as device #8)
connected to your computer.
2. If you have any of your own files or programs on LU10, use
AUTOCOPY to temporarily move them to any other LU.
3. If your system is operational, type G064 if in 128 mode, then type D
9 and skip to step 11 below.
4. Turn your entire system off.
5. Make sure the power switch to your Lt. Kernal is off.
6. Unplug the 25 pin cable from the rear of the Host Adaptor. Leave
the Host Adaptor plugged into the expansion port of your computer.
7. Leave the Lt. Kernal off, and power up the rest of your system.
After about one minute, your monitor should show a normal Com
modore sign-on screen.
8. If you are using a C-128 computer, you must now GO 64.
9. After the C64 sign-on screen appears, connect the 25 pin cable back
into the rear of your Host Adaptor.
10. Power up your Lt. Kernal and allow about 30 seconds for it to
come up to speed.
11. If you are using a 1571 drive, type the following command:

OPEN15,8,15,"U0>M0":CLOSE15 then hit RETURN
12. Place the SYSGEN disk in your floppy drive and type:

LOAD"*",8,l then hit RETURN
13. It will take 10-15 minutes to complete the SYSGEN process. Pro- ^"S^
gress messages (please wait...check summing the DOS) will show up
periodically.

9-26

14. After completion, the SYSGEN process will display the following
message:

"SYSTEM INITIALIZATION COMPLETE"
"NOW DO A FULL SYSTEM RESET"
"THANK YOU"

15. To RESET your system, turn off power to the computer for a
short period of time, and then turn it back on.
16. After running SYSGEN, check your LU CONFIGuration
parameters. A normal SYSGEN will NOT change any of your CON-
FIGured defaults nor destroy any files except those on LU10.
17. AUTOCOPY any files you moved in step 2 back to LU10.
18. This completes the SYSGEN process.

9-27

This page intentionally left blank

9 - 2 8

X
ADDENDA/ERRATA

and
BUG FIXES AND PATCHES

This section is reserved for addenda describing discovered software
problems, the fixes, and DOS versions reflecting the fixes. Please in
sert addenda supplied with any DOS updates in this section.

10-1

This page intentionally left blank

10-2

XI
TROUBLE-SHOOTING

We hope you never have to trouble-shoot your Lt. Kernal hard disk
system, but shipping, even in the best of containers, can be hard on
mechanical devices. Your Lt. Kernal system was fully tested and
burned-in at the factory before it was shipped. It should arrive in
perfect working order.

General Procedures
Trouble shooting any system should follow a strictly ordered pro
cedure. Only after verifying that each prerequisite feature is in order
should the next feature be checked. The following guide will step you
from the most elemental causes of system failure through to some
more complex possible causes. Usually the cause of failure WILL be
one of the simpler ones.

Regardless of how ridiculously simple an item might seem, check each
item carefully and in the order indicated. Doing so will lead you to a
quick resolution of the problem. You may fail to find the problem if
you skip steps, or be led down a long and fruitless path making you
retrace many previously checked points.

TROUBLE-SHOOTING GUIDE
I. CABLING

A. DATA CABLE and ADAPTOR BOARD
1. Check cable connection at Lt. Kernal Host Adaptor and hard

disk enclosure
a. Check for proper pin 1 alignment
b. Check for full and even insertion

2. Check Lt. Kernal Host Adaptor insertion into computer
a. Check that Host Adaptor nose is properly aligned with

expansion port slot inside computer
b. Check that Host Adaptor is fully and evenly inserted

into computer expansion slot
c. Check for proper connections of jumpers, HIRAM and

CAEC cables, and the C-128 cable.
B. POWER CONNECTIONS

1. Check cord entry to Lt. Kernal hard disk enclosure
a. Check that power cord is fully inserted
b. Check that power cord is plugged into a functional outlet

for the correct voltage and frequency of power
c. Check that hard disk power switch is ON at appropriate

point in power-up sequence

11-1

II. FUNCTIONAL TESTS
FIRST — Check your computer without the Lt. Kernal Host Adaptor
plugged in. If it performs normally, then reinstall the Host Adaptor
and proceed.

A. SYMPTOM — SCREEN remains blank indefinitely, or remains
blank for about 1 minute then the normal Commodore sign-on
messages appear WITHOUT the Lt. Kernal messages.

1. A blank screen is normal on the C-128 if the 2 mhz fast mode
is selected in the C-64 mode. Remedy by returning to the
1 mhz mode.

1. Check the internal fan to see if the Lt. Kernal is running —
IF NOT:
a. Check that the Lt. Kernal power switch is ON
b. Check that the POWER CORD is firmly seated in the

receptacle on the rear of the Lt. Kernal hard disk
enclosure

c. Check that the POWER CORD is firmly seated in the
outlet into which it is plugged

d. Check with another device (such as a lamp) that the
power outlet used for the Lt. Kernal IS ACTUALLY
supplying power

e. Check the Lt. Kernal's fuse
• remove the power cord from the Lt. Kernal's

power receptacle
• gently unscrew the cap of the fuse holder until

the cap and fuse together are removed
• carefully pull the fuse and the cap apart
• inspect the fuse. If necessary, check the fuse with

a continuity checker. If it is blown, replace it
ONLY with the exact original type.

2. Check the ribbon cable
a. Check for full, FIRM, and even insertion of the cable

into its connections at both ends
b. Check that pin 1 of the cable corresponds to pin 1 of

the connectors on both the Host Adaptor and the drive
enclosure

c. Check that the cable has not been torn or frayed at any
point especially CLOSE to its connectors

d. ONLY IF THE POINTS ABOVE CHECKED OK,
then remove the ribbon cable from its connections and
check the pins inside each connector to see that no pins
have been bent or broken by improper insertion of
the cable

— if any pins are bent, GENTLY staighten them
with a small, flat tool like a cosmetic 'orange
stick' or a very small screw driver

11-2

— if any pins are broken, you may have to return
your Lt. Kernal to Xetec, Inc. for repair. Call
our technical support for service.

3. Check computer's power supply
a. Check the red POWER indicator on your computer. If

it seems dim or is not on at all, suspect either a bad
computer power supply, or a defective Lt. Kernal Host
Adaptor

b. Test you computer / Lt. Kernal combination with
another known-good computer power supply (prefer-
rably one of the NEWER ones)

c. If the above checks do not resolve the problem, check
your computer and power supply with any large car
tridge (i.e. Commodore's CP/M cartridge)

B. SYMPTOM — Your Lt. Kernal works properly for a time (seconds
to hours), then begins to behave erratically, or screen colors begin
to change for no apparent reason, or the system ceases to function
entirely

THIS IS THE MOST COMMONLY REPORTED PROBLEM
WITH THE LT. KERNAL SYSTEM (and all systems which
use large, active cartridge modules)

The Lt. Kernal Host Adaptor has been designed very conser
vatively. It draws less than two-thirds the amount of power
from the computer that Commodore specifies it may. Yet
MANY power supplies do not meet even Commodore's own
specifications for supplying extra power to accessory devices.

Try a different power supply. The newer 'potted' version
seems a little better at supplying extra power than the original
design. The IDEAL solution is to obtain one of the excellent
third-party designed supplies which GUARANTEE to meet or
exceed Commodore's specifications.

C. SYMPTOM — The Lt. Kernal does a 'double boot'. The screen
briefly displays the sign-on message at the top, then it shrinks
horizontally and returns to a NORMAL sign-on screen WITHOUT
the Lt. Kernal messages.

Your DOS software resident on the hard disk HAS BEEN
DAMAGED. The DOS loader has sensed the damage and
turned itself and the Lt. Kernal Host Adaptor off.

AT THIS TIME YOU HAVE ONLY ONE METHOD OF
RECOVERY AVAILABLE.

11-3

YOU MUST PERFORM THE 'SYSGEN' PROCESS.
SYSGEN will not by itself destroy any of the software you
have on logical drives 0—9, but will destroy all files on
logical drive 10.
Turn to the section 'THE SYSGEN UTILITY' if your Lt.
Kernal does a 'double-boot'.

D. SYMPTOM — The system displays the first couple of lines of
sign-on messages, then just 'hangs' and never displays the
'READY' prompt.

Your DOS software has been corrupted, as previously
described under 'double-boot'symptoms.
Turn to the section 'THE SYSGEN UTILITY' if your Lt.
Kernal displays this symptom.

E. SYMPTOM—Your hard disk begins to make a high-pitched whistle
which continues, but the system appears to behave normally
otherwise.

This is an annoying symptom which is present to some degree
on almost every brand of small hard disk. We have chosen a
brand which is not inclined to 'squeal', but still, it might
happen.

The whistle or squealing noise is caused by dust particles con
taminating one of the rotating parts of the hard disk. It will
not interfere with normal use and the noise will usually sub
side within minutes (to hours) after it begins. Drives allowed
to sit for several hours between uses are most apt to display
this symptom. Drives in continuous duty (like BBS systems)
almost never make this sound.

F. SYMPTOM — Your hard disk enclosure gets very warm or hot
to the touch.

QUICKLY, SHUT THE SYSTEM DOWN!! Your Lt. Kernal
is fan-cooled. Normally, the only warm area will be around
the ventilation exhaust slots. If the top or sides of the hard
disk enclosure begin to get warm, it's a good indication that
the ventilation slots in the enclosure have either been blocked,
or that the fan has failed (possible due to dust accumulation).

NEVER RUN THE LT. KERNAL WITHOUT
THE FAN IN PROPER WORKING ORDER!

11-4

G. SYMPTOM—After power-up, on the 40 column screen, a 'barber
pole' effect appears on the border on the 128, or on the entire screen
on a 64. On the 80 column screen, only the normal Commodore
sign-on message appears without any ready prompt.

The Host Adaptor and the Lt. Kernal, as well as your SYSGEN
disk all have serial numbers that match each other. If you ex
perience this symptom, the serial numbers of your Host Adaptor
and drive do not match. This could be caused by either a corrupted
SYSGEN on the drive OR by an incorrect serial number on your
Host Adaptor.

Check the serial numbers on the back of the drive and the Host
Adaptor to see if they match the serial number on your SYSGEN
disk. If they do, try doing a SYSGEN on the drive. If the screen
still comes up the same way after doing a SYSGEN, contact Xetec,
Inc. for further instructions.

RETURN POLICY

Do not return any Lt. Kernal to Xetec without a RETURN
MATERIAL AUTHORIZATION number (RMA#). If a RMA# is not
clearly marked on the outside of the shipping carton, the product will
be refused.

Call (913) 827-0685 to obtain a RMA#.

Prepare the drive for shipment using the SHIP command descibed on
page 8-47.
Use the original carton or equivalent, insure shipment or assume
the risk of loss or damage in transit, and pre-pay the shipping
charges.

Send a letter with the Lt. Kernal detailing the specific problem. This
will speed up the return of your unit.
If the unit is under warranty, include a copy of the proof of purchase.
If this is not included, you will be billed for the repair.
NOTE: The limited warranty will be honored only if the XETEC, Inc.
registration card is completed and mailed to Xetec.

REMEMBER, follow these steps:

1. Obtain a RMA #
2. Prepare drive for shipping using "SHIP" command
3. Use the original carton or equivalent.
4. Insure shipment.
5. Pre-pay snipping charges.
6. Include a letter describing the problem
7. Include proof of purchase, if under warranty

11-5

This page intentionally left blank

11-6

XII
DOS SYSTEM UPDATES and ENHANCEMENTS
To qualify for DOS updates, you must have REGISTERED with FISCAL
INFORMATION, Inc. by fdling out the Fiscal registration card.

Certain enhancements are to follow and will carry charges. Notices
will be sent to registered owners only.

The limited warranty will be honored only if Xetec, Inc. registration
card is completed and mailed to Xetec.

'BUG' REPORTING

Unfortunately, every system of software will eventually be discovered
to contain 'bugs' or errors in programming. We have made every ef
fort to ensure that the Lt. Kernal DOS is bug-free. If you do find a
software defect, PLEASE REPORT THE PROBLEM AS SOON AS
POSSIBLE to us on a copy of the form which follows. We truly wish
to make the Lt. Kernal error free, and will give every formal 'bug'
report close and careful consideration.

The bug reporting form appears separately on the next page so that
you may photo copy it as necessary.

PLEASE LIMIT your trouble reports to ONE problem per form.You
may. however, send more than one bug report per envelope.

12-1

LT. KERNAL DOS REPORT FORM

THANK YOU FOR YOUR ASSISTANCE IN IMPROVING
THE LT. KERNAL!

Please report only ONE problem per form, however, you may send
more than one form per envelope.

Please answer all questions, if possible.

SERIAL NUMBER

DOS VERSION/REVISON #

Date of problem / / Approx. time of day

C-64 or C-128 (circle one) & computer serial #

Approx. how long have you owned your Lt. Kernal system?

Does the problem occur under identical circumstances WITHOUT the
Lt. Kernal Host Adaptor module plugged in? (circle) Y or N

Approx. how long had the system been turned on before the problem
was detected?

Does the problem appear immediately with a cool system and power
supply, or only after a period of warm up?

(circle) COOL WARMED UP

If you circled WARMED UP, how long must the system warm up
before the problem FIRST begins to occur?

Please describe the problem and all surrounding circumstances in as
much detail a spossible. Include NAMES and VERSIONS if other
commercial software/hardware products are involved. Use the back of
this form if more space is required.

12-2

XIII
Installing CP/M™ on the Lt. Kernal

Using CP/M™

CP/M operates EXACTLY the same on the Lt. Kernal as it does on
floppy disks, except for the speed of disk access. Depending upon the
model of Lt. Kernal system you own, CP/M will run on the hard
drive at a speed of 80% to 103% the speed of RAM disk! That's
FAST!

The Lt. Kernal defaults to the 'L' drive under CP/M and supports all
existing floppy types as well as RAM disk. It is invoked simply by
typing GOCPM from the C-64 or 128 modes, or by CONFIGuring
CP/M as the default mode on power-up.
That's all you need to know to use CP/M on the Lt. Kernal. This is
not intended to be a CP/M manual. If you do not already know CP/M,
you need to study how to use it before attempting to BUILDCPM on
your Lt. Kernal.

Building CP/M™

We cannot distribute CP/M on the Lt. Kernal without infringing on the
copyrights of Digital Research, Inc., the authors of the product.
However, what we can provide is a mechanism whereby you may
copy the CP/M system to the hard disk and enable THAT disk to
become the system's default drive.

FIRST OF ALL— because of the way Commodore chose to implement
CP/M, the Lt. Kernal CP/M support modules are version dependent.
There is only ONE version of Commodore's 128 CP/M which will run
on the Lt. Kernal. It is the

December 1985 Release which supports RS-232 devices
You can only tell the Release Date by 'Booting' CP/M. This release is
the most recent U.S. one of Commodore CP/M at the time of the
writing of this manual, and is widely distributed. Again, it is the ON
LY version which will work with the Lt. Kernal.

SECOND— you will have to enable the 'I/O-l page' option on your
Lt. Kernal Host Adaptor. CP/M expects RAM disk to be present in
the '1/0-2 page' which is the other way the Host Adaptor can be set.
If you have not already enabled the 'I/O-l page' option, do it now
before proceeding.

13-1

THIRD— if you desire to use RAM disk with your Lt. Kernal CP/M,
you MUST build it on the CP/M LU with RAM disk PRESENT.
CP/M built without a RAM disk installed will not support one later. It
is possible, however, to re-build CP/M on an LU at a later date
WITHOUT disturbing any of the files already saved on that LU.
CP/M built with RAM disk may be used without it.

Steps for the building of a CP/M LU:

1. You will need to CONFIGure an LU for CP/M use and ACTIVATE
it. That entirely erases the LU, and prepares it for the CP/M operating
system. You may rebuild the CP/M system on that SAME LU later
without ACTTVATEing the LU.

2. Create a CP/M diskette containing CP/M and the following additional
fdes:

PIP.COM
SAVE.COM
ERASE.COM

The fdes CCP.COM and CPM + .SYS will have been placed on the
diskette already by the COPYSYS command which create it.

You may build CP/M on the Lt. Kernal using either a 1541 or a 1571
floppy drive. Even though it takes a bit longer on the 1541, it will not
affect the final speed of the Lt. Kernal version.

3. From the 128 mode of operation, type BUILDCPM and press return,
if you have prepared the LU and Host Adaptor properly, you will soon
be prompted to insert your CP/M 3.0 diskette. Do so and press return
again.

4. You will see the farruliar CP/M boot message appear, and soon the system
will issue the CP/M 'A' prompt. DO NOTHING ELSE EXCEPT EX
ACTLY the steps below:
type SAVE < return >
wait for the 'A' prompt, then type CCP < return>
wait for the 'A' prompt, then press CONTROL and C keys down

together
5. The SAVE processor will now be invoked, and will prompt you for:

prompt you enter
FILE-NAME T.COM < return >
Starting hex Address 4000 < return >
Ending hex Address 40ff < return >

The floppy disk will churn awhile, then you will be returned to the 'A;
prompt again.

13-2

http://PIP.COM
http://SAVE.COM
http://ERASE.COM
http://CCP.COM

Warning: We are approaching the only unreliable part of the process.
Up until now, CP/M has been in exclusive control of the computer.
Now we have to 'trap' it and place the Lt. Kernal back in control. If
the following step fails, you will have to re-boot CP/M and return
directly to THIS next step. You DO NOT have to re-SAVE the

^ \ T.COM file above.
6. Now type T < return >

The message will prompt you to press your I.C.Q.U.B. button located
on your Host Adaptor. Firmly and quickly press and release the button.
Within ten seconds you should see the Lt. Kernal hard disk access light
come on almost solidly. If the light does not come on within that time,
re-boot your system and try this step again.
It works perfectly the first time 9 out of 10 tries, but occasionally CP/M
just will not yield control to the Lt. Kernal. When that happens, we find
it is MOST likely to work on the next try if you turn power to your 128
off for at least 10 seconds before trying again.
If the Lt. Kernal has gained control of CP/M, you will see the access
light stay on solidly for about five seconds and your system will res
pond with the 'L' (Lt. Kernal) drive prompt.

7. Follow the next few steps EXACTLY:
type A: <return>

_ wait for 'A' prompt, then press CONTROL and C keys together
wait for 'A' prompt, then type PIP L: =*.*[rv]<return>
All files will be copied from the 'A' drive to the 'L' drive, and they
will be verified after copying.

If PIP returns without errors, you have successfully built a CP/M
operating system on this LU. You may now PIP any files you choose
to the 'L' drive. We suggest that you copy all your utility software to
USER 0, and use SET.COM to make all your utilities SYSTEM type
files. It is also a good idea to use SET.COM to force all utilities to
RO (Read Only) so you cannot accidentally erase them.

Operating Speed
The Lt. Kernal cannot speed up the floppy disk, but you will be amaz
ed at the speed of loading and copying files on the Lt. Kernal. You
can even further speed up the operation of a 40-column system, if you
do not mind a little (very unattractive) screen flickering.
The Lt. Kernal CP/M BIOS looks at the 40/80 column key on the 128

s0m^ as a signal for which mode to boot in. If you wish to use CP/M in the
40 column mode, be in the 40 column mode when you GOCPM.
Likewise for the 80 column mode.

13-3

http://SET.COM
http://SET.COM

Once the the Lt. Kernal has gone to CP/M, it then looks at the 40/80
key as a speed switch. If it is UP (40 column setting), the Lt. Kernal
accesses the disk at 1 MHz. If it is in the 80 column position, the Lt.
Kernal automatically shifts to 2 MHz during disk operations. The 40
column display cannot OPERATE at 2 MHz but the Lt. Kernal ONLY
shifts speed DURING disk access, so 2 MHz operation causes violent
screen flickering WHILE READING FILES. If you do not mind the
flickering, you can make the Lt. Kernal go Full Speed Ahead even
with a 40 column display.

Remember, you can BUILDCPM in either 40 or 80 column modes and
still use it in either mode simply based upon the position of the 40/80
key when you issue the GOCPM command.

That is all there is to it! Enjoy your new CP/M power
and speed — only on the Lt. Kernal.

13-4

XIV
Lt. Kernal Networking

Using the Lt. Kernal multiplexer, it is possible to connect up to 12
computers to the same Lt. Kernal hard drive system. Each multiplexer
can have up to four computers connected to it and you can have up to
three multiplexers daisy-chained together. In this manner, you can con
nect mulitples of Commodore 64s and/or 128s to your Lt. Kernal
system allowing each computer to access the same information and
files stored on the hard drive.
To begin networking your Lt. Kernal, you will need one multiplexer
for each set of four computers you are wanting to connect to the
system as well as an additional Host Adaptor for each of the additional
computers. For example, if you had three computers that you wanted
to connect to your current system, you would need one multiplexer
and a total of three Host Adaptors. If you wanted to connect seven ad
ditional computers to your system, you would need two multiplexers
and a total of seven Host Adaptors.

There are limitations as to what you can do with a multiplexed Lt.
Kernal system. You can not write to a fde while it is being read or
written to by another computer and vice versa. Writing to the same
fde from multiple computers will be fatal to your LU and all data
will be corrupted. This is un-RECOVERable. However, you can read
from the same fde or have the fde open for reading from multiple
computers. You can not reset, remove power from, or apply power to
any computer or multiplexer while the Lt. Kernal hard drive is being
accessed. You also can not have a computer powered down while the
rest of the system is powered-up, or have a cable connected to a
multiplexer without being connected to a operating computer. Any of
these things will cause problems such as lock-ups and corrupted LUs.

Each additional computer connected to your Lt. Kernal hard drive is
configured with a different port number which is displayed on the
right hand side of the screen when the system is first powered-up. The
port number for each computer is set by a four position dip switch
located within each computer's Host Adaptor. The different port
numbers allow each system to be CONFIGured anyway you want them
to be. Only port#00 can set all of the parameters within CONFIG and
set LU parameters and types.

14-1

If you have any questions regarding networking your Lt. Kernal
system or would like to place an order, you will need to contact the
sales department at Xetec, Inc. To order multiplexer(s) and Host
Adaptor(s) we will need the following information to complete your
order:

Name
address
serial number of drive system
quantity and type of computers you are wanting to network

Each order comes with all cables and a power supply for each
multiplexer to complete your networking system.

14-2

XV
DIAG command

DIAG, a direct command, allows the user to check the read/write
capability of all free blocks in each LU on the hard drive. This com
mand comes in handy if you are trying to determine whether or not
your drive has a bad sector on it.

DIAG will write to and then read from each block specified by the
user on the hard drive. It will continue this process until one of the
following occurs:

1) It completes its first pass and continues on until the user holds then
releases the space bar or any other key on the keyboard.
2) It comes up to an error which reads "error in data compare".
3) If it locks up the drive.

To verify if there is a bad spot on an LU which might cause files to
become corrupted and inaccessable, do the following:

1) AUTOCOPY all the files on the suspect LU onto another LU.
2) ACTIVATE the suspect LU and do not put a DOS image on the LU.
3) Do a DIR to find out the number of free blocks on the LU
4) Do a DIAG, entering the total number of free blocks on the LU.

If DIAG completes its passes without any problem, the LU should be
O.K. However, if it comes up with an "error in data compare" or
locks up the drive, then you may have a bad sector on your LU and
the drive may need to be reformatted. If the latter occurs, contact
Xetec, Inc. for further information.

Please note: depending on the size of the LU and the number of
blocks that are being DIAGnosed, the process can take from a few
seconds to a few hours to complete its first pass. ALSO, if doing a
DIAG shows you possibly have a bad spot on your LU, you will have
to ERAse the diagnostic file on the LU to free up the blocks used in
DIAG before you can continue, or re-try the DIAG procedure.

1 5 - 1

This page intentionally left blank

APPENDIX I
KEY File Programming Example

The following program implements a complete 'dictionary' on the Lt.
Kernal. This is NOT intended to be an example of good programming
practice, or even to demonstrate the limits of the KEY fde system, but
rather to serve as a fairly good example of a (simple) KEY fde
application.

Lines 1-89 aren't even really part of the dictionary application. They
comprise a BASIC full-screen editor to make your life a little easier
when entering the word definitions into the dictionary's 'definitions'
file.

Lines 91-249 actually demonstrate KEY files. The editor code is plac
ed at the beginning only to make it run faster.

This is a very simple, single KEY system. The organization is:

• One KEY file with one directory of 6750, 30 character 'word'
keys. The record numbers associated with the keys point directly to
a specific record in the definitions (RELative) file.

• A definitions file. This RELative file is intially OPENed for a
record length of 41 characters. Each screen line entered in a word's
definition occupies a single record, with the leading character of
each record set to ' " (quotation mark) to allow punctuation to be
INPUT from BASIC.

The record number fetched from a SEARCH of the KEY file points to
the FIRST record of definition. That record contains a single numeric
value defining how many lines of text definition follows.

That means, of course, that one record is 'wasted' for every definition
in the file. In a two-tiered KEY system, the definitions' lengths could
be contained in yet another KEY file with keys of only 5 characters in
length. Remember that KEYs may be ANY text, even print images of
numeric values. With that in mind, the record number derived from
the word search could BOTH point to the first line of definition in the
RELative fde, AND be used as a KEY to find the length of the defini
tion in another KEY file. The multi-tiered keying can be carried on in
finitely, for very complex search criteria.

An organization diagram for a short, theoretical version of our dic
tionary follows:

A-1

The file 'DICTKEYS' contains the words. The file 'DEFINITIONS'
contains the text of the definitions. Record #1 of that file also con
tains a pointer to the NEXT available record in itself.

KEY FILE
name 'DICTKEYS'
org. 6750 keys (words)

of 30 char.

KEY REC-NUM

RELative file
'DEFINITIONS'
up to 65535 lines
of 41 char.

RECORD DEFINITION

1 11 (next avail, rec.)
2 1 (length in lines)
3 "RED fruit"
4 1
5 "YELLOW fruit"
6 2 (2 lines of def.)
7 "A horse-like,"
8 "African animal."
9 1

10 "coinage"

In order to use the program which follows, you must first build the
KEYs file. This needs to be done only once.

Enter the command BUILDINDEX
Supply the file name 'DICTKEYS'
Request 6750 keys
Request ONE directory, and
a KEY length of 30.

The program will automatically create and intialize 'definitions', the
RELative file. You will supply the words and the definition text when
the program is run.

The program follows:

APPLES 2
FIGS 4
MONEY 9
ZEBRA 6

I GOTO 173:REM SETUPS
3 REM BASIC FULL-SCREEN EDITOR
5 REM RETURNS UP TO 20 FULL LINES IN E*(l-20)
7 REMEMBER TO DIM E$(20) BEFORE CALLING
9 REM
II REM
13 REM
15 PRINT"vclear>"; :F0RI = 1T020:E$(I) = ,'-C40 spao=s>":

PRINT
17 NEXT I:X=1:L=1
19 PRINT" ENTER PRESS 'RETURN' HERE

i

21 PRINT" DEFINITION WHEN DONE EDITING.
•Chome>";

23 GETG$:IFG$=""THENG0SUB85:G0T023
25 IFG$="-tolear>"ORG*="-Chome>"THENX=l:L=l:

PRINT"•(home>"; : G0T023
27 IFG$="'{ insert >"THEN23
29 IFG$= "-[right)-"ANDL=20ANDX=40THEN23
31 IFG$=CHR$(13)ANDL=20ANDX=40THENRETURN
33 IFG$="{right}"THENPRINTMID$(E$(L),X,l); :

G0SUB67:G0T023
35 IF G$="-Cup>"ORG$="{down>"THENPRTNTMID$-(E$(L),X.

l) + "-C lef t> "; : G0SUB75: PRTNTG$; : G0T023
37 IFN0T(X=40ANDL=20)ANDG$<>"-Cleft>"AND-

G$<>CHR$(13)0RG$=CHR$(20)THEN PRINT" <left>";
G$;

39 IF G$="-Cleft>"ANDL=lANDX=lTHEN23
41 IF G$="aeft>"THENPRINTMID$(E$(L),X,l);G$;

"i lef t> "; : G0SUB59-. G0T023
43 IFG$=CHR$(20)THENG0SUB55: GOT023
45 IFG$=CHR$(13)ANDL=20THEN23
47 XI=0:IFG$=CHR$<13)THENPRINTMID$<E$(L), X,1'

"Oeft>":Xl=X:X=l
49 IFG$=CHR$(13)ANDX1=40 THENPRINT"-Cup>";
51 IFG$=CHR$(13)THENGOSUB77:G0TO23
53 G0SUB63:G0T023
55 IFX=1THENE$(L)=" "+RIGHT$(E$(L),39): GO17

57 E$<L)=LEFT$(E$(L),X-1)+" "+RIGHT$(E$(L
59 X=X-1:IFX<1THENX=40:L=L-1:G0T079
61 RETURN
63 IFX=1THENE$(L)=G$+RIGHT$(E$(L),39):'

A-3

65 E$(L)=LEFTS(E$(L),X-l)+G$+RIGHT$(E$(L),40-X)
67 IFL=20THENIFX<40THENX=X+1:RETURN
69 IFL=20THENG$="":RETURN
71 IFL<20THEN X=X+1:IFX>40THENX=1:GOT077
73 RETURN
75 IFG$= "{up} "THENL=L-1: GOT079
77 L=L+1
79 IFL<1THENL=1:G$-""
81 IFL>20THENL=20:G$=""
83 RETURN
85 B=B+1 -. IFB = 1OTHENPRINTMI D-$ (E$(L), X, 1); +"{left>";

:RETURN
87 IFB=20THENB=0:PRINT"{rvs on)"+MID$(E$(L),X,

l) + '\rrvs of f K left}";
89 RETURN
91 REM
93 REM
95 REM
97 REM PAD W$ TO 30 CHARS & SET IN K$
99 REM
101 REM
103 K*=LEFT*(W*+"{30 spaces)",30): RETURN
105 REM
107 REM
109 REM
111 REM ROUTINE TO FIND ONE WORD
113 REM
115 REM
117 G0SUB97:SYS64628:3,1,1,K$,L,H,S
119 IFS=OTHENK$="FOUND {rvs on}"+W$:RETURN
121 K$='\rrvs on}"+w$+"{rvs off]- NOT FOUND": RETURN
123 REM
125 REM
127 REM
129 REM ENTER A NEW KEY IN DICTKEYS
131 REM
133 REM
135 GOSUB97:SYS64628-. 1,1,1,K$,L,H,S: IFSOOTHENSTOP
137 RETURN
139 REM
141 REM
143 REM ROUTINE TO FIND FOUR SURROUNDING WORDS

A-4

145 F0RI=1T05:W$(I)="{30 spaces/":NEXTI
147 REM
149 R=£:G0SUB97
151 SYS646£S:5,1,1,K$,L,H,S
153 IFS=OTHENW$(R)=K$
3T55 R=R-1:IFR<>0THEN151
157 R=4-.G0SUB97
159 SYS64628:4,1,1,K$,L,H,S
161 IFS=OTHENW$(R)=K$
163 R=R+1:IFR<>6THEN159
165 G0SUB111:W$(3)=K$:RETURN
167 REM
169 REM
171 REM
173 DIM E$(20):0PEN1,8,3,"DICTKEYS":0PEN2,8,2,

"DEFINITIONS, L, "+CHR$(4D
175 OPEN 15,8,15
177 Rl = l:GOSUB209:IFE<>OTHENRl=l:G0SUB209:R2=2:

PRINT#2,R2:REM INITIALIZE DEFS
179 R1=1:GOSUB209:INPUT#2,R2
181 REM
183 REM GET A WORD TO LOOK UP
185 REM
187 PRINT:PRINT:INPUT "WORD TO SEARCH OR <rvs

on>Q{rvs off>UIT";W$:PRINT:IFw$="Q"THENSTOP
189 GOSUB lll:IFS<>OTHENPRINT K$:G0SUB143:

F0RI=1T05:PRINTI;" ";W$(I):NEXT
191 IFS<THENU$="3":PRI^rI^\$:GOT0203
193 IFSOO THEN PRINT"** OF WORD OR -Crvs onJA-Crvs

off>DD WORD OR {rvs on>N<rvs off>EW WORD";
195 GETU$:IFU$=""THEN195
197 IFU$="N" THEN 137
199 IFU$="A" THEN PRINT:R1=R2:G0SUB209:GOSUB 129:

G0SUB235:G0T0183
201 IFU$<"1"ORU$>"5"0RU$="3"THEN195
203 PRINT:U=VAL(U$):W$=W$(U):G0SUB111:R1=H*256+L:

G0SUB209:G0SUB221:G0T0183
205 REM

/•^ 207 REM
209 REM POSITION IN DEFS FILE
211 REM
213 REM

A-5

2 1 5 H=INT(R1/256):L=R1-(H*256)
2 1 7 PRINT#15, 'T"-HC^$(2)-HCHR$(L)+CHR$(H)-H3HR$(1)
2 1 9 INPUT#15,E,T$,T,S:RETURN
221 REM
2 2 3 REM PRINT DEF FOR WORD
2 2 5 REM
2 2 7 PRINT
2 2 9 INPUT#2,LI:F0RI=1T0L1:INPUT#2,P$:PRINTP$;:

NEXT:RETURN
231 REM
2 3 3 REM
2 3 5 REM
2 3 7 REM
2 3 9 REM GET NEW DEFINITIONS
2 4 1 REM
2 4 3 R1=R2:G0SUB209:G0SUB3:PRINT#2,O:F0RI=1T020
2 4 5 IFE$(I) = "-C40 spaces} "G0T0249
2 4 7 PRINT#2,CHR$(34)+E$(I):R2=R2+1
2 4 9 NEXT:G0SUB209:PRINT#2,R2-R1:Rl=l:G0SUB209:

R2=R2+1: P R I N T S , R2: RETURN

A-6

APPENDIX II

Bulletin Board

Xetec, Inc. now has a bulletin board in operation to provide support for
all Lt. Kernal owners. Fiscal Information also has a bulletin board and the
two numbers are:

Xetec board number 913 827 1974
Fiscal board number 904 252 8179

We encourage your use of these boards and welcome any input as to how
we can improve our service to you.

APPENDIX III
Lt. Kernal Add-on Drives

With the Lt. Kernal system and the SCSI (Small Computer Systems
Interface) that the Lt. Kernal uses, you can theoretically connect up to
seven Lt. Kernal SCSI drives together on one system.

Add-on drives are daisy-chained onto the original system with each
drive having its own SCSI address. The original drive has a SCSI ad
dress of zero (0) while each additional drive has an address of one
through six (1-6). You can order an add-on drive through Xetec, Inc.
which comes complete with all cabling needed to connect to your ex
isting system, and a new SYSGEN disk that will support your new
drive configuration.

20/40 Meg Add-on Drives
Please use the following steps to connect your 20 Meg Add-on Drive
enclosure to your Lt. Kernal.

Hardware connection
1. Remove 25 pin signal cable from the back of the Lt. Kernal and plug

into the back of the Add-on enclosure (either slot).
2. Plug one end of second 25 pin cable (included with Add-on) into the

second slot on the back of the Add-on Drive enclosure.
3. Plug the other end of the second cable into the slot on the back of

the Lt. Kernal enclosure labeled Host Adaptor.

Setting up LU parameters

1. Type CONFIG
2. Select F6 for DOS 6.3

Fl for DOS 7.0
3. For physical controller answer 1.
4. For physical drive answer 0.

At this point, your screen should display the LU parameter set-up table.
(NOTE: All the LUs on other drive(s) are not shown). Now you can add
LUs that have NOT BEEN USED on the original drive.

The first LU assigned can use cylinders beginning with cylinder 0 (zero)
and up.

5. UPDATE the new parameters.
6. Exit CONFIG by using F8 for DOS 6.3

F7 for DOS 7.0
ACTIVATE new LUs and perform a power down, power up sequence to
Update all LUs.

This completes the process.

INDEX

ACTIVATE 8-2
Activating the system 3-1
add-on drives A-8
addenda/errata 10-1
autoaccess 7-1
AUTOCOPY 8-3
AUTODEL 8-4
AUTOMOVE 8-5
AUTOSTART 7-2

back-up copying 9-2
bell 7-3
blocks 9-22
bug fixes 10-1
bug reporting 12-1
BUILD 8-6
BUILDCPM 8-7
BUILDINDEX 8-8
BUILDKEY file 7-4, 9-15
Bulletin Board A-7
Burst Mode 2-14

CAEC 2-3
CHANGE 8-9
CHECKSUM 8-10, 9-25
CLEAR 8-11
command

overview 5-1
syntax definitions 6-1

CONFIG 8-12
CONFIG Processor 9-21
COPY 8-13
CP/M 13-1
cylinder 9-22

D 8-14
DEL 8-15
DELETEkey 7-5, 9-8, 9-18
device # 7-1, 8-12, 8-14
DI 8-16
DIAG 15-1
DIR 6-2, 8-17
directly invoked applications 9-4

X-1

directory 9-8, 9-14
dirty-flags 8-7
disk partitioning 9-6
DOS

features 1-1, 5-2
report form 12-2
updates 10-1, 12-1

DUMP 8-19

ERA 8-20
EXEC 8-21

FASTCOPY 8-22
FETCH 8-23
FIND 8-24

G064 8-25
GO 128 8-26
GOCPM 8-27

HIRAM 2-3

I/O modification 2-18
ICQUB 8-28
INSERTkey 7-6, 9-8, 9-17
installation 2-1

25 pin signal cable 2-6, 2-12
AC power 2-6, 2-12
C-64 CAEC 2-3
C-64 HIRAM 2-3
C-128 Adaptor pcb 2-7
C-128 CAEC 2-10
C-128 HIRAM 2-10

INSTALLCHECK 3-2
invoke 8-30

Key 6-2, 9-7
Key files 9-7

example 9-8, A-1
Run-Mode Commands 9-11
use of, 9-7

L 8-31
LDLU 7-7
lfn 6-1,9-8,9-14
LG 7-8
LKOFF 8-32

X-2

LKREV 8-33
LOAD 7-9, 8-31
LU 6-1, 8-34

machine language key file access 9-16
MERGE 8-35
multiplexer 14-1

networking 14-1

OOPS 8-36
OPEN 7-10
operating concepts 4-1

port# 14-2
power-down 2-20
power-up 2-20
programming considerations 9-1
PXE 2-20

QUERY 8-37

record number 6-2, 9-8, 9-14
rech 9-8, 9-14
reel 9-8, 9-14
RECOVER 8-38
REL 6-2
RENUM 8-39
reserved memory areas 9-5
return policy 11-5

S 8-45
SAVE 7-12, 8-46
sa 6-1
SCRATCH 7-12
SCSI A-8
SEARCHkey 7-13, 9-8, 9-19
sector 9-22
SHIP 2-1, 8-47
SHUFFLE 7-14
speed tips 9-6
'stack' manipulation 9-5
status 9-8, 9-14
stringvar 9-14

Sysgen Utility 9-25

X-3

technical specifications 1-2
trouble-shooting guide 11-1
TYPE 8-48

UPDATEDOS 8-49
USER 8-50

VALIDATE 8-51

Xetec Lt. Kernal operating manual

FOURTH PRINTING

Copyright • 1989 Xetec, Inc.
All rights reserved

XETEC, Inc. 2804 Arnold Rd. Salina, Ks. 67401
(913) 827-0685

X-4

